Abstract: A thin-film transistor panel comprises an insulative substrate, a plurality of thin-film transistor elements arranged at predetermined intervals on said substrate, and wirings electrically connecting the thin-film transistor elements characterized in that the thin-film transistor element comprises a gate electrode, a gate-insulating film, an i-type semiconductor layer to face the gate electrode through the gate insulating film therebetween, an n-type semiconductor layer, source and drain electrodes electrically connected the portions of the i-type semiconductor layer through the n-type semiconductor layer, and an anodically oxidized film located between the source and drain electrodes to electrically isolate, said source and drain electrodes.
Abstract: An apparatus automatically generates an additional musical part which varies as a function of a given principal part of a music piece. In an embodiment, the apparatus adds a melodic part with a varying pitch line of an arpeggio each element of which is a selected chord tone having a pitch associated with a time-shifted pitch of the principal part. As a result, a "canon" or "Fugue" polyphonic music is obtained.
Abstract: A digital audio signal prerecorded in a DAT is processed by a computer to calculate a compressed difference data array. This compressed difference data array is obtained by compression processing on the basis of a variable compression ratio depending on the magnitude of the variation of the original waveform data array. This compressed difference data array is written in a ROM as waveform data for musical tone generation, and the ROM which stores the waveform data is used as a circuit arrangement for an electronic musical instrument. The electronic musical instrument expands the compressed difference data array on the basis of expansion ratio data, and reproduces it as a waveform data array. This waveform data array is audibly output as a musical tone signal.
Abstract: A method for liquid crystal orienting film is disclosed, comprising:a step of preparing a thin film by laminating a monomolecular film on a substrate having an electrode formed thereon, said monomolecular film being formed by spreading on water surface an amphiphilic high molecular material having a repeating unit as represented by the following general formula (1): ##STR1## wherein R.sup.1 is a tetravalent group containing at least two carbon atoms, R.sup.2 is a divalent group containing at least two carbon atoms and each of R.sup.3 and R.sup.4 is an aliphatic, an alicyclic or an aromatic monovalent group having 1-30 carbon atoms or combinations thereof, which may be substituted by a halogen atom, a nitro group, an amino group, a cyano group, a methoxy group or an acetoxy group, or a hydrogen atom, and at least one of R.sup.3 and R.sup.
Abstract: A liquid crystal device of this invention is constituted by a display cell, a compensation cell, and a pair of polarizing plates. The display cell is designed such that electrodes are respectively formed on the opposing surfaces of a pair of substrates, arranged to oppose each other through a predetermined gap, to be perpendicular to each other, alignment films are respectively formed to cover the electrodes, and a first liquid crystal material is sealed between the substrates to be twisted at a predetermined angle. The compensation cell is arranged to be stacked on the display cell. The compensation cell is designed such that a second liquid crystal material is sealed between a pair of substrates, subjected to alignment processing, to be twist-aligned in a direction opposite to the twist direction of the first liquid crystal material. The pair of polarizing plates are arranged to sandwich the display and compensation cells. A refractive index anisotropy .DELTA.n.sub.
Abstract: An amorphous semiconductor layer is deposited on an insulating substrate, and an excimer laser is radiated thereon, and thus the amorphous is crystallized. A silicon oxide layer is deposited on the semiconductor layer, and a silicon nitride layer is deposited on the silicon oxide layer to be thicker than the silicon oxide layer. Thereafter, a gate electrode is formed on the silicon nitride layer. Thus, there is provided a method for a thin film transistor having a good mobility of carriers and a good characteristic of a breakdown voltage in that a gate insulating film is formed of a double-layer structure having the silicon oxide and silicon nitride layers.
Abstract: An image formed by an arbitrary method, can be reproduced on an object (to which image transfer is performed) having a three-dimensional arcuated surface, e.g., a cylindrical object. An original plate sheet is prepared by forming an image on a transparent sheet by using an ink containing carbon. A transfer ink sheet having a hot-melt ink layer formed on its one surface and a reflecting layer formed on its other surface is placed on an object to which image transfer is performed. A cushion member having transparency is placed on the transfer ink sheet, and a transparent plate is stacked on the cushion member. When the transparent plate is urged against the object side, the cushion member is compressed. As a result, the original plate sheet is deformed along the outer surface shape of the object and is brought into tight contact therewith. A flash lamp is turned on in this state. An image portion absorbs infrared rays emitted from the flash to generate heat.
Abstract: A TFT array has a plurality of gate lines and a plurality of drain lines formed on a transparent insulating substrate. The gate lines intersect with the drain lines. TFTs are formed at the intersections of the gate lines and the drain lines. An opaque film is formed above the gate lines, the drain lines, and the TFTs, allowing no passage of light passing through the gaps between the transparent electrode, on the one hand, and the gate and drain lines, on the other hand. Therefore, when the TFT array is incorporated into a liquid-crystal display, the display will display high-contrast images.