Patents Assigned to Catalytic Distillation Technologies
  • Patent number: 7825282
    Abstract: A process for the conversion of tertiary butyl alcohol to ethyl tertiary butyl ether, including: dehydrating tertiary butyl alcohol to form a product stream comprising isobutylene and water; separating the product stream to form an isobutylene-rich fraction and a water-rich fraction; separating the water-rich fraction to recover a hydrocarbon fraction and a water fraction having less than 1 ppm hydrocarbon content; reacting isobutylene in the isobutylene-rich fraction with ethanol to form a reaction product comprising ethyl tertiary butyl ether; separating the reaction product to recover unreacted ethanol and an ethyl tertiary butyl ether stream; and recycling at least a portion of the unreacted ethanol to the reacting; wherein the ethyl tertiary butyl ether stream comprises at least 99 weight percent ethyl tertiary butyl ether.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: November 2, 2010
    Assignee: Catalytic Distillation Technologies
    Inventors: Mitchell E. Loescher, Lawrence A. Smith, Jr.
  • Publication number: 20100228063
    Abstract: A process for recovering benzene, the process including: feeding hydrogen and a hydrocarbon fraction comprising benzene, components lighter than benzene, components heavier than benzene, and diolefins to a catalytic distillation reactor system comprising at least one reaction zone comprising a hydrogenation catalyst; concurrently in the catalytic distillation reactor system: contacting the diolefins and hydrogen in the presence of the hydrogenation catalyst to selectively hydrogenate at least a portion of the diolefins; and fractionating the hydrocarbon fraction to form a fraction comprising benzene and other C6 hydrocarbons, and a heavies fraction comprising C7+ hydrocarbons; recovering the heavies fraction from the first catalytic distillation reactor system as a bottoms fraction; and withdrawing the fraction comprising benzene and other C6 hydrocarbons from the catalytic distillation reactor system as a benzene concentrate fraction.
    Type: Application
    Filed: March 9, 2010
    Publication date: September 9, 2010
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventors: Martinus J. Almering, Purvis K. Ho, Mitchell E. Loescher, Montri Vichailak
  • Patent number: 7781634
    Abstract: A process for the removal of aromatic compounds from an olefin feed to a paraffin alkylation is disclosed. The process may include feeding a olefin and aromatic containing hydrocarbon stream and a dilute alkylate product stream comprising alkylate product and unreacted material from the paraffin alkylation to a distillation zone and removing the unreacted material as overheads and removing a more concentrated alkylate product stream and a portion of the aromatic compounds as bottoms resulting in an improved alkylation process.
    Type: Grant
    Filed: January 8, 2007
    Date of Patent: August 24, 2010
    Assignee: Catalytic Distillation Technologies
    Inventor: William M. Cross, Jr.
  • Publication number: 20100197987
    Abstract: A process for fractionating isobutene from normal butenes, including: introducing hydrogen and a feed stream comprising isobutene, 1-butene, and 2-butene into a first column including a reaction zone containing a hydroisomerization catalyst operating at a first pressure and concurrently: (i) converting at least a portion of the 1-butene to 2-butene, and (ii) separating isobutene from the 2-butene; recovering a first overheads fraction comprising isobutene from the first column; recovering a first bottoms fraction comprising isobutene, 2-butene, and unreacted 1-butene from the first column; introducing the first bottoms fraction into a top portion of a second column comprising a fractionation column operating at a second pressure lower than the first pressure; separating the first bottoms into a second overheads fraction comprising isobutene and 1-butene and a second bottoms fraction comprising 2-butene; compressing the second overheads fraction; and introducing the compressed second overheads fraction to a lo
    Type: Application
    Filed: February 3, 2009
    Publication date: August 5, 2010
    Applicant: Catalytic Distillation Technologies
    Inventor: Martinus J. Almering
  • Publication number: 20100197952
    Abstract: Processes for producing diaryl carbonates are disclosed, where such processes may provide for the production of diaryl carbonates from green house gases, such as carbon dioxide. The processes disclosed advantageously integrate diethyl carbonate and diaryl carbonate production, eliminating the need for solvent-based extractive distillation, as is commonly required when producing diaryl carbonates from dimethyl carbonate, providing for the integration of separation equipment and raw material usage, and reducing the operating and capital requirements for such processes. In some embodiments, processes disclosed herein may be operated essentially closed-loop with respect to ethanol usage, for example.
    Type: Application
    Filed: July 31, 2009
    Publication date: August 5, 2010
    Applicant: Catalytic Distillation Technologies
    Inventor: J. Yong Ryu
  • Publication number: 20100179362
    Abstract: A process for the dimerization of isoolefins, including: contacting an isoolefin with a solid catalyst composition passivated with at least one of an ether, an alcohol, and water; wherein the solid catalyst composition comprises at least one of a solid phosphoric acid catalyst and a resin of a macroporous matrix of polyvinyl aromatic compound crosslinked with a divinyl compound and having thereon from about 3 to 5 milli equivalents of sulfonic acid groups per gram of dry resin; and wherein at least 50% to less than 100% of acid groups in the solid catalyst composition are neutralized with a metal of Al, Fe, Zn, Cu, Ni, or mixtures thereof. The catalyst may be metalized prior to placement in a reactor or may be metalized in situ.
    Type: Application
    Filed: January 12, 2009
    Publication date: July 15, 2010
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventors: Lawrence A. Smith, JR., William M. Cross, JR.
  • Publication number: 20100174126
    Abstract: A process for oligomerization of isobutene, the process including: feeding a hydrocarbon stream comprising n-butane, 1-butene, 2-butene, isobutane, and isobutene to a catalytic distillation reactor system comprising a hydroisomerization catalyst; feeding hydrogen to the catalytic distillation reactor system; concurrently in the catalytic distillation reactor system: contacting the 1-butene with the hydrogen in the presence of the hydroisomerization catalyst to convert at least a portion of the 1 -butene to 2-butene; separating the isobutane and the isobutene from the n-butane and the 2-butene; recovering the isobutane and the isobutene from the catalytic distillation reactor system as an overheads fraction; recovering the n-butane and the 2-butene from the catalytic distillation reactor system as a bottoms fraction; contacting the overheads fraction in an oligomerization reaction system with an oligomerization catalyst to convert a portion of the isobutene to oligomers.
    Type: Application
    Filed: January 8, 2009
    Publication date: July 8, 2010
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventor: Mitchell E. Loescher
  • Patent number: 7745674
    Abstract: A process for alkylation of benzene, including: feeding benzene, a polyalkylate, and a catalyst to a reactor comprising a first and a second reaction zone; reacting the benzene and the polyalkylate in the first reaction zone under transalkylation conditions to form a monoalkylate product; feeding a C2-C4 olefin to the reactor intermediate the first and second reaction zones; reacting benzene and the C2-C4 olefin in the second reaction zone under alkylation conditions to form additional monoalkylate product; recovering an effluent from the reactor, wherein the effluent comprises benzene, the monoalkylate product, any unreacted C2-C4 olefins, heavy hydrocarbons, and the catalyst; separating the catalyst from the effluent; separating the benzene from the monoalkylate product and the heavy hydrocarbons within the liquid effluent; separating the monoalkylate product from the heavy hydrocarbons within the liquid effluent; and recovering the monoalkylate product.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: June 29, 2010
    Assignee: Catalytic Distillation Technologies
    Inventors: Christopher C. Boyer, Lawrence A. Smith, Jr.
  • Publication number: 20100152517
    Abstract: A process for the regeneration of spent sulfuric acid including contacting spent sulfuric acid containing acid soluble oils (ASO) with sulfur dioxide to extract at least a portion of the ASO from the spent sulfuric acid into the sulfur dioxide. The sulfuric acid phase having a reduced ASO content and a sulfur dioxide phase containing at least a portion of the ASO may be recovered. The resulting sulfuric acid and sulfur dioxide phases may be further separated to recover ASO, sulfur dioxide, and sulfuric acid.
    Type: Application
    Filed: December 12, 2008
    Publication date: June 17, 2010
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventor: William M. Cross, JR.
  • Patent number: 7737075
    Abstract: More selective and efficient Ni hydrotreating catalysts are those which contain more than about 60% of the Ni content on the peripheral surface of porous supports, such as extruded alumina, which may be obtained by spraying an atomized solution of a Ni compound onto the support and drying it at a temperature in the range of from 200 to 600° C. When used, for example, to remove acetylenic compounds from butadiene streams, higher recovery of the desired butadiene with lower acetylenic content and low heavy polymer deposition is obtained than was possible with prior catalysts.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: June 15, 2010
    Assignee: Catalytic Distillation Technologies
    Inventor: J. Yong Ryu
  • Patent number: 7737079
    Abstract: More selective and efficient Ni hydrotreating catalysts are those which contain more than about 60% of the Ni content on the peripheral surface of porous supports, such as extruded alumina, which may be obtained by spraying an atomized solution of a Ni compound onto the support and drying it at a temperature in the range of from 200 to 600° C. When used, for example, to remove acetylenic compounds from butadiene streams, higher recovery of the desired butadiene with lower acetylenic content and low heavy polymer deposition is obtained than was possible with prior catalysts.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: June 15, 2010
    Assignee: Catalytic Distillation Technologies
    Inventor: J. Yong Ryu
  • Publication number: 20100137668
    Abstract: A process for oligomerizing isoolefins, the process including: feeding an isoolefin to an oligomerization reaction zone; feeding an oxygen-containing reaction moderator to the oligomerization reaction zone; concurrently in the oligomerization reaction zone: contacting the isoolefin with an oligomerization catalyst to convert at least a portion of the isoolefin to oligomers comprising dimers and trimers of the isoolefin; reacting a portion of the moderator with a portion of at least one of the isoolefin and the oligomers to form an oxygenated oligomerization byproduct; recovering an effluent from the oligomerization reaction zone comprising the oligomers and the oxygenated oligomerization byproduct; fractionating at least a portion of the effluent to recover a fraction comprising the oxygenated oligomerization byproduct and the trimers and a fraction comprising the dimers.
    Type: Application
    Filed: December 2, 2008
    Publication date: June 3, 2010
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventors: Mitchell E. Loescher, Turi Odegard
  • Patent number: 7723555
    Abstract: A process for the alkylation of isobutane is disclosed wherein isobutane is fed to two separate alkylation systems. The effluent from the first alkylation system is fed to an interim debutanizer where the C4's are separated from the alkylate product. The overhead C4 product is then fed to the second alkylation system to provide the isobutane. The effluent from the second alkylation system is fed to a traditional deisobutanizer to prevent any build up of normal butanes in the system.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: May 25, 2010
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, Jr., William M. Cross, Jr.
  • Patent number: 7696119
    Abstract: A process for producing various organic carbonates by performing transesterification and disproportionation reactions in dual vapor/liquid phase mode preferably in the presence of solid catalyst composition selected from the group consisting of oxides, hydroxides, oxyhydroxides or alkoxides of two to four elements from Group IV, V and VI of the Periodic Table supported on porous material which has surface hydroxyl groups and the method of reactivating catalyst deactivated by polymer deposition by contacting the deactivated catalyst with a solution of hydroxy containing compound in a solvent such as benzene or THF.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: April 13, 2010
    Assignee: Catalytic Distillation Technologies
    Inventor: J. Yong Ryu
  • Publication number: 20100081854
    Abstract: A process for treating an alkylation feedstock comprising olefins, n-alkanes, iso-alkanes, and impurities including one or more of butadiene, oxygenates, nitrogen-containing compounds, and sulfur-containing compounds, the process including: contacting an alkylation feedstock containing at least one of oxygenates and nitrogen-containing compounds with water to produce a hydrocarbon fraction having a reduced concentration of the at least one of oxygenates and nitrogen-containing compounds and an aqueous fraction comprising at least a portion of the at least one of oxygenates and nitrogen-containing compounds; separating water from the hydrocarbon fraction having a reduced concentration to produce a hydrocarbon fraction having a reduced water content; contacting the hydrocarbon fraction having a reduced water content with an oligomerization catalyst in a first oligomerization reaction zone under oligomerization conditions to react at least a portion of the olefins to form a reactor effluent comprising olefin oli
    Type: Application
    Filed: October 1, 2008
    Publication date: April 1, 2010
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventors: William M. Cross, JR., Lawrence A. Smith, JR., Gary G. Podrebarac
  • Publication number: 20100063334
    Abstract: A process for reducing the concentration of benzene in a hydrocarbon stream, the process including: fractionating a reformate to form a benzene concentrate fraction comprising benzene and other C6 hydrocarbons, and a heavies fraction comprising C7+ hydrocarbons; and hydrogenating the benzene concentrate fraction to form a hydrocarbon fraction having a reduced benzene concentration.
    Type: Application
    Filed: September 8, 2008
    Publication date: March 11, 2010
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventors: Montri Vichailak, Purvis K. Ho, Martinus J. Almering, Arvids Judzis, JR., Willibrord A. Groten, Lawrence A. Smith, JR., Yongqiang Xu
  • Publication number: 20100044273
    Abstract: A process for reducing benzene content in a reformate stream, including: fractionating a full range reformate comprising benzene, C7 to C9 monoalkyl aromatics, and C10+ polyalkyl aromatics into at least three fractions including a light reformate fraction comprising the benzene; a medium reformate fraction comprising the C7 to C9 monoalkyl aromatics; and a heavy reformate fraction comprising the C10+ polyalkyl aromatics; feeding the light reformate fraction, the heavy reformate fraction and a transalkylation catalyst to a transalkylation reaction zone; contacting the light fraction and the heavy fraction in presence of the transalkylation catalyst in the transalkylation reaction zone to react at least a portion of the benzene with C10+ polyalkyl aromatics to form monoalkyl aromatics; separating an effluent from the transalkylation reaction zone to form a catalyst fraction and a liquid fraction comprising the monoalkyl aromatics.
    Type: Application
    Filed: August 20, 2008
    Publication date: February 25, 2010
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventors: Kerry L. Rock, Christopher C. Boyer, Lawrence A. Smith, JR.
  • Publication number: 20100048970
    Abstract: A process for reformate benzene reduction, the process including: feeding a light reformate fraction, an olefin feed, and an alkylation catalyst to an alkylation reaction zone; contacting the light reformate fraction and the olefin feed in the presence of the alkylation catalyst in the alkylation reaction zone to convert at least a portion of the benzene and the olefin to a monoalkylate; recovering a catalyst fraction from an alkylation reaction zone effluent; and recovering a light reformate product having a reduced benzene content.
    Type: Application
    Filed: August 20, 2008
    Publication date: February 25, 2010
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventors: Christopher C. Boyer, Lawrence A. Smith, JR., Arvids Judzis, JR., John R. Adams
  • Publication number: 20100048966
    Abstract: A process for alkylation of benzene, including: feeding benzene, a polyalkylate, and a catalyst to a reactor comprising a first and a second reaction zone; reacting the benzene and the polyalkylate in the first reaction zone under transalkylation conditions to form a monoalkylate product; feeding a C2-C4 olefin to the reactor intermediate the first and second reaction zones; reacting benzene and the C2-C4 olefin in the second reaction zone under alkylation conditions to form additional monoalkylate product; recovering an effluent from the reactor, wherein the effluent comprises benzene, the monoalkylate product, any unreacted C2-C4 olefins, heavy hydrocarbons, and the catalyst; separating the catalyst from the effluent; separating the benzene from the monoalkylate product and the heavy hydrocarbons within the liquid effluent; separating the monoalkylate product from the heavy hydrocarbons within the liquid effluent; and recovering the monoalkylate product.
    Type: Application
    Filed: August 20, 2008
    Publication date: February 25, 2010
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventors: Christopher C. Boyer, Lawrence A. Smith, JR.
  • Patent number: RE41120
    Abstract: A process for removing organic sulfur compounds from heavy boiling range naphtha in a dual purpose reactor wherein the heavy boiling range naphtha is fed downflow over a fixed bed of hydrodesulfurization zone and then treated with hydrogen in a hydrodesulfurization catalytic distillation zone. Vapor containing hydrogen sulfide is removed between the zones. Preferably the heavy boiling range naphtha is produced by treating a full boiling range naphtha to concurrently react diolefins and mercaptans and split the light and heavy boiling range naphtha in a distillation column reactor.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: February 16, 2010
    Assignee: Catalytic Distillation Technologies
    Inventor: Amarjit S. Bakshi