Patents Assigned to Catalytic Distillation Technologies
  • Patent number: 7649123
    Abstract: A process for the oligomerization of propylene is disclosed wherein a tungstated zirconia catalyst prepared as a distillation structure is used in a reaction distillation zone under conditions of temperature and pressure to concurrently react the propylene to produce oligomers thereof and separate the oligomer products from unreacted propylene by fractional distillation in a distillation column reactor. Compared to the prior art tubular or plug flow reactors, lower temperatures and pressures are used to produce higher conversions and selectivities to preferred isomeric forms useful for preparing neo acids.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: January 19, 2010
    Assignees: Catalytic Distillation Technologies, ExxonMobil Chemical Patents Inc.
    Inventors: Michael J. Keenan, Ramzi Y. Saleh, James C. Vartuli, Robert C. Lemon, Jean W. Beeckman, Christopher C. Boyer, Mitchell E. Loescher
  • Patent number: 7638041
    Abstract: A selected boiling range fluid catalytically cracked naphtha stream is subjected to simultaneous splitting, thioetherification of a light boiling range naphtha and selective hydrogenation of the dienes in a medium boiling range naphtha.
    Type: Grant
    Filed: February 14, 2005
    Date of Patent: December 29, 2009
    Assignee: Catalytic Distillation Technologies
    Inventors: Christopher C. Boyer, Gary G. Podrebarac, William M. Cross, Jr., Arvids Judzis
  • Publication number: 20090305880
    Abstract: A process for producing various organic carbonates by performing transesterification and disproportionation reactions in dual vapor/liquid phase mode preferably in the presence of solid catalyst composition selected from the group consisting of oxides, hydroxides, oxyhydroxides or alkoxides of two to four elements from Group IV, V and VI of the Periodic Table supported on porous material which has surface hydroxyl groups and the method of reactivating catalyst deactivated by polymer deposition by contacting the deactivated catalyst with a solution of hydroxy containing compound in a solvent such as benzene or THF.
    Type: Application
    Filed: August 11, 2009
    Publication date: December 10, 2009
    Applicant: Catalytic Distillation Technologies
    Inventor: J. Yong Ryu
  • Publication number: 20090306448
    Abstract: A process for producing an alkylate having a low Reid vapor pressure, the process including: contacting a C6+-containing hydrocarbon stream with a mixture of isopentane and isobutane in the presence of an acid catalyst in an alkylation reactor to form a dilute alkylate product, wherein the C6+-containing hydrocarbon stream includes at least one of oligomers of C3 to C5 olefins and a dilute alkylate produced by contacting an isoparaffin with at least one of C3 to C5 olefins and oligomers of C3 to C5 olefins; fractionating the dilute alkylate product to form an isobutane-rich fraction, a n-butane-rich fraction, a fraction containing isopentane, and an alkylate product having a Reid vapor pressure less than 0.35 bar (5 psi); recycling at least a portion of the fraction containing isopentane to the alkylation reactor.
    Type: Application
    Filed: June 6, 2008
    Publication date: December 10, 2009
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventors: Lawrence A. Smith, JR., Abraham P. Gelbein, William M. Cross, JR.
  • Publication number: 20090299114
    Abstract: A supported catalyst for selective hydrogenation of acetylenes comprising 3-15 wt. % Ni promoted with 0.005-0.2 Pd on a support. The catalyst is prepared by depositing nickel promoted with palladium on a support, containing one or more optional elements from copper, silver, Group IA (Li, Na, K, Rb, Cs, Fr) and Group IIA (Be, Mg, Ca, Sr, Ba, Ra) and B(Zn, Cd,) of the periodic table of elements and characterized as: Component Range of component Preferably wt. % wt. % Ni 3-15 ?4-11 Cu 0-I?? 0.0-0.6 Pd 0.005-0.2?? 0.01-0.1? Ag 0-10 0-5 Group IA ?0-2.5 ??0-1.5 Group IIA & B 0-25 0.
    Type: Application
    Filed: August 11, 2009
    Publication date: December 3, 2009
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventor: J. Yong Ryu
  • Patent number: 7615673
    Abstract: A process for the oligomerization of propylene is disclosed wherein MCM-22 zeolite prepared as a distillation structure is used in a reaction distillation zone under conditions of temperature and pressure to concurrently react the propylene to produce oligomers thereof and separate the oligomer products from unreacted propylene by fractional distillation in a distillation column reactor. Compared to the prior art tubular or plug flow reactors, lower temperatures and pressures are used to produce higher conversions and selectivities to preferred isomeric forms.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: November 10, 2009
    Assignees: Catalytic Distillation Technologies, ExxonMobil Chemical Patents Inc.
    Inventors: Mitchell E. Loescher, Christopher C. Boyer, Michael J. Keenan, Jon E. R. Stanat
  • Patent number: 7601879
    Abstract: A process for paraffin alkylation of isoalkane with isoolefins in which an olefin component comprising oligomerized propylene, oligomerized isoolefin or mixtures thereof is fed to a paraffin alkylation unit wherein the dissociated olefin components forming the oligomers react with isoalkane to produce a reaction mixture containing an alkylate and unreacted isoalkane The reaction mixture is fractionally distilled to recover unreacted isoalkane as overheads and alkylate as bottoms. The stoichiometry of isoolefins to isoalkane in the alkylation unit is maintained by adjustment of the feed to the oligomerization, for example, by adding fresh isoalkane to the recovered, unreacted isoalkane from the alkylation unit being recycled to the oligomerization. Alternatively, a portion of the recovered unreacted isoalkane is dehydrogenation to an isoolefin which is added to the oligomerization.
    Type: Grant
    Filed: August 16, 2006
    Date of Patent: October 13, 2009
    Assignee: Catalytic Distillation Technologies
    Inventors: William M. Cross, Jr., Lawrence A. Smith, Jr.
  • Publication number: 20090234167
    Abstract: A process for the production of ethylene, the process including: feeding hydrogen, a heavy solvent, a light solvent, and acetylene to a down-flow reactor comprising at least one reaction zone comprising a hydrogenation catalyst; concurrently in the down-flow reactor: contacting acetylene and hydrogen in the presence of the hydrogenation catalyst to convert at least a portion of the acetylene to ethylene; boiling at least a portion of the light solvent from a liquid phase to a vapor phase; recovering a reactor effluent comprising heavy solvent, light solvent, and ethylene; condensing at least a portion of the light solvent in the vapor phase; recovering a solvent fraction comprising the heavy solvent and the light solvent; recovering a product fraction comprising ethylene.
    Type: Application
    Filed: March 14, 2008
    Publication date: September 17, 2009
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventor: J. Yong Ryu
  • Publication number: 20090211943
    Abstract: A process for the reduction of benzene in a gasoline stream, the process including: feeding a gasoline fraction including benzene and C6+ hydrocarbons and at least one of an alcohol and an ether to a catalytic distillation column comprising at least one reaction zone containing an alkylation catalyst, wherein the at least one reaction zone is above a gasoline fraction feed location; concurrently in the catalytic distillation column: separating the C6 hydrocarbons from C7+ hydrocarbons, wherein the C6 hydrocarbons and benzene distill upward into the at least one reaction zone; contacting benzene and the at least one of an alcohol and an ether in the at least one reaction zone in the presence of the alkylation catalyst to convert at least a portion of the benzene and alcohol /ether to an alkylate; recovering an overheads fraction including C6 hydrocarbons, any unreacted alcohol and ether, and water; and recovering a bottoms fraction including C7+ hydrocarbons and the alkylate.
    Type: Application
    Filed: February 10, 2009
    Publication date: August 27, 2009
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventors: Mitchell E. Loescher, Gary G. Podrebarac, Quoc T. Phan
  • Publication number: 20090200205
    Abstract: A process for reducing the sulfur content of a gasoline fraction comprising one or more organic sulfur compounds including mercaptans, thiophenes, and mono- and di-sulfides, the process including: contacting a gasoline fraction having an initial organic sulfur content with a sulfuric acid-rich composition to extract organic sulfur compounds from the gasoline fraction and produce a gasoline fraction having reduced sulfur content and a sulfuric acid fraction having increased organic sulfur content; and separating the gasoline fraction having reduced organic sulfur content and the sulfuric acid-rich fraction having increased organic sulfur content.
    Type: Application
    Filed: February 11, 2008
    Publication date: August 13, 2009
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventors: Lawrence A. Smith, JR., William M. Cross, JR.
  • Publication number: 20090203933
    Abstract: Processes for the alcoholysis, inclusive of transesterification and/or disproportionation, of reactants are disclosed. The alcoholysis process may include feeding reactants and a trace amount of soluble organometallic compound to a reactor comprising a solid alcoholysis catalyst, wherein the soluble organometallic compound and the solid alcoholysis catalyst each independently comprise a Group II to Group VI element, which may be the same element in various embodiments. As an example, diphenyl carbonate may be continuously produced by performing transesterification over a solid catalyst followed by disproportionation, where a trace amount of soluble organometallic compound is fed to the transesterification reactor.
    Type: Application
    Filed: February 11, 2008
    Publication date: August 13, 2009
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventor: J. Yong Ryu
  • Publication number: 20090198091
    Abstract: A process for treating an alkylation feedstock comprising olefins, n-alkanes, and iso-alkanes, the process including: contacting at least a portion of the alkylation feedstock with sulfuric acid in a reaction zone under conditions to form sulfate esters of the olefins; separating the n-alkanes and the iso-alkanes from the sulfuric acid and the sulfate esters; recovering the n-alkanes and the iso-alkanes in a first product stream; and recovering the sulfate esters in a second product stream; wherein the sulfuric acid has a strength titrating as below 75 weight percent H2SO4/water mixtures.
    Type: Application
    Filed: January 31, 2008
    Publication date: August 6, 2009
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventors: Lawrence A. Smith, JR., Abraham P. Gelbein, William M. Cross, JR.
  • Publication number: 20090193710
    Abstract: A fuel or fuel blendstock comprising ethanol, ethyl ethers, olefins, and alkanes. In some embodiments, the fuel or fuel blendstock of claim 1, wherein the fuel or fuel blendstock may have an octane number greater than 92 (RON+MON)/2). In other embodiments, the fuel or fuel blendstock may have a Reid vapor pressure less than 7.2 psi. Also disclosed is a process for the production of a fuel, the process including: contacting ethanol and at least one gasoline fraction including alkanes and olefins in the presence of a catalyst to form a fuel mixture including ethyl ethers, alkanes, unreacted olefins, and unreacted ethanol; and recovering the fuel mixture for use as a gasoline or gasoline blendstock without separation of the ethanol from the fuel mixture.
    Type: Application
    Filed: February 4, 2008
    Publication date: August 6, 2009
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventors: Yi-Gang Xiong, Kerry L. Rock, Arvids Judzis, Mitchell E. Loescher
  • Publication number: 20090188838
    Abstract: A process for reducing the sulfur content of a hydrocarbon stream, including: feeding a hydrocarbon stream including sulfur compounds to a catalytic distillation reactor having one or more hydrodesulfurization reaction zones; feeding hydrogen to the catalytic distillation reactor; concurrently in the catalytic distillation reactor: fractionating the hydrocarbon stream into a heavy fraction and a light fraction; contacting hydrogen and the light fraction to form H2S and a light fraction of reduced sulfur content; recovering the light fraction, H2S, and hydrogen as an overheads; recovering the heavy fraction; heating the overheads to a temperature from 500 to 700° F.
    Type: Application
    Filed: December 19, 2008
    Publication date: July 30, 2009
    Applicant: Catalytic Distillation Technologies
    Inventor: Gary G. Podrebarac
  • Publication number: 20090188837
    Abstract: A process for the desulfurization of a fluid catalytically cracked naphtha wherein the valuable olefins are retained and recombinant mercaptans are prevented from forming, resulting in a low sulfur naphtha.
    Type: Application
    Filed: January 29, 2008
    Publication date: July 30, 2009
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventor: Gary G. Podrebarac
  • Publication number: 20090183981
    Abstract: An integrated process for treating pyrolysis gasolines, including: feeding the pyrolysis gasoline to a first stage wherein the pyrolysis gasoline is substantially depentanized and acetylene and diolefins are reacted with hydrogen to produce an effluent having a reduced acetylene and diolefin content; and feeding the effluent to a second stage, wherein the second stage comprises a catalytic distillation hydrotreating process. The second stage may include a first catalytic distillation reactor system comprising a first distillation reaction zone containing a first hydrogenation catalyst, and the process may further include treating a C6-boiling material in the first distillation reaction zone to react sulfur compounds with hydrogen to produce hydrogen sulfide, the treated C6 material being concurrently separated as a second overheads from C7 and heavier material by fractional distillation, the C7 and heavier material being removed from the first distillation reaction zone as a first bottoms.
    Type: Application
    Filed: January 23, 2008
    Publication date: July 23, 2009
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventors: Gary G. Podrebarac, Paul B. Himelfarb
  • Publication number: 20090182183
    Abstract: A process for the oligomerization of propylene is disclosed wherein a tungstated zirconia catalyst prepared as a distillation structure is used in a reaction distillation zone under conditions of temperature and pressure to concurrently react the propylene to produce oligomers thereof and separate the oligomer products from unreacted propylene by fractional distillation in a distillation column reactor. Compared to the prior art tubular or plug flow reactors, lower temperatures and pressures are used to produce higher conversions and selectivities to preferred isomeric forms useful for preparing neo acids.
    Type: Application
    Filed: January 15, 2008
    Publication date: July 16, 2009
    Applicants: CATALYTIC DISTILLATION TECHNOLOGIES, EXXONMOBIL CHEMICAL PATENTS, INC.
    Inventors: Michael J. Keenan, Ramzi Y. Saleh, James C. Vartuli, Robert C. Lemon, Jean W. Beeckman, Christopher C. Boyer, Mitchell E. Loescher
  • Publication number: 20090178955
    Abstract: A process for the production of olefins from at least one of an alcohol and ether, the process including: contacting at least one alcohol or ether with a hydrofluoric acid-treated amorphous synthetic alumina-silica catalyst under decomposition conditions to produce an olefin.
    Type: Application
    Filed: October 29, 2008
    Publication date: July 16, 2009
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventor: J. Yong Ryu
  • Patent number: 7553995
    Abstract: A process for the production of tertiary ethers, including: feeding a hydrocarbon stream comprising isoolefins and propionitrile to a distillation column reactor system containing at least one etherification reaction zone; feeding a C2 to C6 monoalcohol or mixture thereof to the distillation column reactor; concurrently in the distillation column reactor system: reacting a portion of the isoolefins with a portion of the alcohols to form a tertiary ether; and separating the tertiary ether from unreacted isoolefins; withdrawing the tertiary ether and propionitrile from the distillation column reactor system as a bottoms; withdrawing the unreacted isoolefins from the distillation column reactor system as an overheads; and operating the distillation column reactor system such that the etherification reaction zone is substantially free of propionitrile.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: June 30, 2009
    Assignee: Catalytic Distillation Technologies
    Inventors: Christopher C. Boyer, Mitchell E. Loescher, Willibrord A. Groten, Mario J. Maraschino, Kerry L. Rock
  • Patent number: 7553997
    Abstract: A process for bulk hydrogenation of an olefin-containing feedstock containing a plurality of different unsaturated olefinic hydrocarbon compounds, for example a feedstock containing from 60 to 100 mass % unsaturated olefinic hydrocarbon compounds, by subjecting the olefinic feedstock to bulk hydrogenation in a catalytic distillation zone containing a hydrogenation catalyst, and in the presence of hydrogen, under conditions favoring bulk hydrogenation to hydrogenate unsaturated olefinic hydrocarbon compounds present in the feedstock into their corresponding saturated compounds, and withdrawing the saturated compounds from the catalytic distillation zone.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: June 30, 2009
    Assignee: Catalytic Distillation Technologies
    Inventors: Nicolaus Ladislaus Stark, Josias Sevaas De Kock Swart