Patents Assigned to Catalytic Distillation Technologies
  • Patent number: 7368617
    Abstract: Acetylenes and dienes in a stream containing hydrogen, methane, C2-C6 olefins and paraffins, C2-C6 acetylenes and dienes, benzene, toluene, xylenes, and other C6+ components are hydrogenated in a downflow boiling point reactor wherein the heat of reaction is absorbed by the liquid in the reactor which produces a vapor. Besides the feed to the reactor there is a recirculating stream which is fed at a rate sufficient to ensure that the catalyst particles within the reactor are wetted. A third stream, which is taken from a downstream distillation column, is fed to provide the make up mass corresponding to the mass evaporated in the reactor. The composition of the this third stream controls the steady state composition of the liquid flowing through the reactor.
    Type: Grant
    Filed: November 8, 2004
    Date of Patent: May 6, 2008
    Assignee: Catalytic Distillation Technologies
    Inventors: Abraham P. Gelbein, Lawrence A. Smith, Jr.
  • Patent number: 7351327
    Abstract: A process for concurrently fractionating and treating a full range naphtha stream. The full boiling range naphtha stream is first subjected to simultaneous thioetherification and splitting into a light boiling range naphtha, an intermediate boiling range naphtha and a heavy boiling range naphtha. The intermediate boiling range naphtha containing thiophene and thiophene boiling range mercaptans is passed on to a polishing hydrodesulfurization reactor where a low sulfur, low olefin gas oil is concurrently fed to the polishing reactor to insure that a liquid phase is present.
    Type: Grant
    Filed: April 7, 2004
    Date of Patent: April 1, 2008
    Assignee: Catalytic Distillation Technologies
    Inventors: Gary G. Podrebarac, Willibrord A. Groten, Lawrence A. Smith, Jr.
  • Patent number: 7348463
    Abstract: A process for hydrogenating aromatic compounds to produce hydrogenated cyclic compound by contacting an aromatic compound with hydrogen under conditions of pressure and temperature to react the hydrogen and aromatic compound in the presence of a catalyst comprising from 4 to 14 wt. % Ni and 0.0 up to about 0.9 wt. % Cu deposited on a transition alumina support having BET surface area of from about 40 to 180 m2/g, and pore volume of from about 0.3 to about 0.8 cc/g, preferably in the presence of a solvent boiling at least 10° F. higher than the aromatic compound and the hydrogenated cyclic compound, such as the hydrogenation of benzene to produce cyclohexane.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: March 25, 2008
    Assignee: Catalytic Distillation Technologies
    Inventor: J. Yong Ryu
  • Patent number: 7344692
    Abstract: A process for the regeneration of sulfuric acid contaminated with hydrocarbons and water to produce pure concentration acid comprising: contacting sulfuric acid contaminated with hydrocarbons and water with oxygen and elemental sulfur in the presence of a vanadium containing catalyst in a reaction zone, maintaining at least a portion of the acid in the liquid phase, converting hydrocarbon to carbon oxides and water, and converting sulfur and sulfurdioxide to sulfurtrioxide, separating the reactor effluent into a vapor stream and a liquid stream and cooling and partially condensing of the vapor stream to concentrate clean acid.
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: March 18, 2008
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, Jr., Abraham P. Gelbein
  • Patent number: 7320745
    Abstract: An energy efficient process scheme for a highly exothermic reaction-distillation system in which the reactor is external to the distillation column and the feed to the reactor is a mixture of at least one liquid product stream from the distillation column with or without other liquid/vapor reactants. The reactor is operated under adiabatic and boiling point conditions and at a pressure that results in vaporizing a portion of the liquid flow through the reactor due to the heat of reaction. Under these conditions, reaction temperature is controlled by reactor pressure. The pressure (and hence the temperature) is maintained at a sufficiently high level such that the reactor effluent can be efficiently used to provide reboil heat for the distillation column.
    Type: Grant
    Filed: January 19, 2005
    Date of Patent: January 22, 2008
    Assignee: Catalytic Distillation Technologies
    Inventors: Arvids Judzis, Jr., Abraham P. Gelbein, John R. Adams, Christopher C. Boyer
  • Patent number: 7319176
    Abstract: A process for removing acetylenic compounds using unsulfided metallic nickel or unsulfided metallic nickel modified with metallic Mo, Re, Bi or mixtures in which the catalyst is used alone or is used in combination with other acetylenic selective catalysts. The unsulfided metallic nickel catalyst or modified catalyst must be the first catalyst to contact the hydrocarbon stream.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: January 15, 2008
    Assignee: Catalytic Distillation Technologies
    Inventors: J. Yong Ryu, John R. Adams, Willibrord A. Groten
  • Patent number: 7319180
    Abstract: A process for the alkylation of alkane with olefin or olefin precursor such as an oligomer of tertiary olefin comprising contacting a liquid system comprising acid catalyst, isoparaffin and olefin in concurrent downflow into contact in a reaction zone with a disperser mesh under conditions of temperature and pressure to react said isoparaffin and said olefin to produce an alkylate product is disclosed. Preferably, the liquid system is maintained at about its boiling point in the reaction zone. Unexpectedly, the olefin oligomers have been found to function as olefin precursors and not as olefins in the reaction. Thus, for example, a cold acid alkylation using an oligomer of isobutene (principally dimer and trimer) with isobutane produces isooctane with the isobutane reacting with the constituent isobutene units of the oligomers on a molar basis. The product isooctane is essentially the same as that produced in the conventional cold acid process.
    Type: Grant
    Filed: October 26, 2004
    Date of Patent: January 15, 2008
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, Jr., Mitchell E. Loescher, John R. Adams, Abraham P. Gelbein
  • Patent number: 7314947
    Abstract: A process for the production of dialkyl carbonates from the reaction of alcohol, for example C1-C3 alcohols, with urea is disclosed wherein the water and ammonium carbamates impurities in the feed are removed in a prereactor. The water is reacted with urea in the feed to produce ammonium carbamate which is decomposed along with the ammonium carbamates originally in the feed to ammonia and carbon dioxide. In addition some of the urea is reacted with the alcohol in the first reactor to produce alkyl carbamate which is a precursor to dialkyl carbonate. Dialkyl carbonates are produced in the second reaction zone. The undesired by-product N-alkyl alkyl carbamates are continuously distilled off from the second reaction zone along with ammonia, alcohol and dialkyl carbonates under the steady state reactor operation. N-alkyl alkyl carbamates can be converted to heterocyclic compounds in a third reaction zone to remove as solids from the system.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: January 1, 2008
    Assignee: Catalytic Distillation Technologies
    Inventors: J. Yong Ryu, Abraham P. Gelbein
  • Publication number: 20070289901
    Abstract: An energy efficient process scheme for a highly exothermic reaction-distillation system in which the reactor is external to the distillation column and the feed to the reactor is a mixture of at least one liquid product stream from the distillation column with or without other liquid/vapor reactants. The reactor is operated under adiabatic and boiling point conditions and at a pressure that results in vaporizing a portion of the liquid flow through the reactor due to the heat of reaction. Under these conditions, reaction temperature is controlled by reactor pressure. The pressure (and hence the temperature) is maintained at a sufficiently high level such that the reactor effluent can be efficiently used to provide reboil heat for the distillation column.
    Type: Application
    Filed: August 27, 2007
    Publication date: December 20, 2007
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventors: Arvids Judzis, Abraham Gelbein, John Adams, Christopher Boyer
  • Patent number: 7291258
    Abstract: A process for concurrently fractionating and hydrotreating a full range naphtha stream.
    Type: Grant
    Filed: November 12, 2005
    Date of Patent: November 6, 2007
    Assignee: Catalytic Distillation Technologies
    Inventors: Gary G. Podrebarac, Mario J. Maraschino, Montri Vichailak
  • Patent number: 7288693
    Abstract: A method of operating a multi-phase downflow reactor so as to induce a pulsing flow regime is disclosed. The pulse may be induced by increasing the gas rate while maintaining the liquid rate until a pressure drop sufficient to induce the pulse flow is achieved. The method is particularly useful in the sulfuric acid catalyzed alkylation of olefins in a reactor packed with a stainless steel/polypropylene mesh.
    Type: Grant
    Filed: April 19, 2004
    Date of Patent: October 30, 2007
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, Jr., William M. Cross, Jr.
  • Patent number: 7287745
    Abstract: Bubble columns fractionate with vapor-liquid mass transfer efficiencies approaching that of distillation towers when vapor velocities in excess of 50% of jet flood are used. If the vapor velocities are pushed above about 70% of jet flood then the distillation performance of a given column packing becomes similar for both liquid continuous operation (bubble column mode) and vapor continuous operation (ordinary distillation tower mode).
    Type: Grant
    Filed: June 19, 2006
    Date of Patent: October 30, 2007
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, Jr., Mitchell E. Loescher
  • Patent number: 7288686
    Abstract: A supported hydrogenation catalyst comprising (1)Pd or a Group 8 metal comprising Pd and one other Group 8 metal, preferably a Group 8 metal selected from Pt, Ir, Ru, Co or Ni, and (2) at least two metals selected from Ag, Zn or Bi, preferably Ag and at least one of Zn or Bi. Optionally the catalyst may contain K. The catalyst is supported on a porous support such as a silica, alumina, silica-alumina or carbon. The preferred supports have an average pre diameter of 180 ? with no pores smaller than 35 ?, total pore volume larger than 0.65 cc/g and preferably less than about 100 m2/g BET surface area. The catalysts are useful for the hydrogenation of unsaturated hydrocarbons such as acetylenes and diolefins in various mixed olefin streams.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: October 30, 2007
    Assignee: Catalytic Distillation Technologies
    Inventor: J. Yong Ryu
  • Patent number: 7288668
    Abstract: Diphenyl carbonate is produced by reacting phenol with diethyl carbonate in a series of fixed bed reactors each of which is connected at different position on a distillation column via side draw and return streams. The composition of material in a distillation column varies along the length of the column, which is predictable under a given set of conditions of temperature and pressure, thus withdrawing streams at different stages in the column, allows the reactor receiving the feed from a particular stage to be operated under conditions to maximize the desired reaction, while allowing the unreacted or byproduct to go back into the distillation and be sent to a stage (by the equilibrium of the distillation) where they are favorably treated in a reactor.
    Type: Grant
    Filed: November 17, 2005
    Date of Patent: October 30, 2007
    Assignee: Catalytic Distillation Technologies
    Inventors: J. Yong Ryu, Abraham P. Gelbein
  • Patent number: 7279592
    Abstract: A process for the production of dialkyl carbonates from the reaction of alcohol, for example C1-C3 alcohols, with urea is disclosed wherein the water and ammonium carbamates impurities in the feed are removed in a prereactor. The water is reacted with urea in the feed to produce ammonium carbamate which is decomposed along with the ammonium carbamates originally in the feed to ammonia and carbon dioxide. In addition some of the urea is reacted with the alcohol in the first reactor to produce alkyl carbamate which is a precursor to dialkyl carbonate. Dialkyl carbonates are produced in the second reaction zone. The undesired by-product N-alkyl alkyl carbamates are continuously distilled off from the second reaction zone along with ammonia, alcohol and dialkyl carbonates under the steady state reactor operation. N-alkyl alkyl carbamates can be converted to heterocyclic compounds in a third reaction zone to remove as solids from the system.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: October 9, 2007
    Assignee: Catalytic Distillation Technologies
    Inventors: J. Yong Ryu, Abraham P. Gelbein
  • Patent number: 7273957
    Abstract: A process for the production of gasoline stocks wherein lower molecular weight olefins are first oligomerized and the oligomers then hydrogenated. In the first instance the oligomerization is carried out in a single pass fixed bed boiling point reactor. The oligomers are then hydrogenated in a distillation column reactor.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: September 25, 2007
    Assignee: Catalytic Distillation Technologies
    Inventors: Amarjit S. Bakshi, Mitchell E. Loescher, Nishit Sahay
  • Patent number: 7261809
    Abstract: A process for removing organic sulfur compounds from heavy boiling range naphtha in a dual purpose reactor wherein the heavy boiling range naphtha is fed downflow over a fixed bed of hydrodesulfurization zone and then treated with hydrogen in a hydrodesulfurization catalytic distillation zone. Vapor containing hydrogen sulfide is removed between the zones. Preferably the heavy boiling range naphtha is produced by treating a full boiling range naphtha to concurrently react diolefins and mercaptans and split the light and heavy boiling range naphtha in a distillation column reactor.
    Type: Grant
    Filed: November 15, 2002
    Date of Patent: August 28, 2007
    Assignee: Catalytic Distillation Technologies
    Inventor: Amarjit S. Bakshi
  • Patent number: 7255777
    Abstract: Improved HETP is obtained in the operation of a distillation column containing trays with a packing of a porous container containing a particulate material intimately associated with a resilient component having at least 50 volume % open space, preferably at least 70 volume % positioned on the trays compared to the trays without the packing. The packing may contain a catalytic particulate material and the distillation may involve reaction and distillation of the reaction products. The particulate material may also be inert and the distillation of the conventional type to separate components in the distillation mixture without reaction.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: August 14, 2007
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, Jr., Gary R. Gildert, James R. Fair, A. Frank Seibert
  • Patent number: 7250542
    Abstract: A process for the alkylation of alkane with olefin or olefin precursor such as an oligomer of tertiary olefin comprising contacting a liquid system comprising acid catalyst, isoparaffin and olefin in concurrent downflow into contact in a reaction zone with a disperser mesh under conditions of temperature and pressure to react said isoparaffin and said olefin to produce an alkylate product is disclosed. Preferably, the liquid system is maintained at about its boiling point in the reaction zone. Unexpectedly, the olefin oligomers have been found to function as olefin precursors and not as olefins in the reaction. Thus, for example, a cold acid alkylation using an oligomer of isobutene (principally dimer and trimer) with isobutane produces isooctane with the isobutane reacting with the constituent isobutene units of the oligomers on a molar basis. The product isooctane is essentially the same as that produced in the conventional cold acid process.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: July 31, 2007
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, Jr., Mitchell E. Loescher, John R. Adams, Abraham P. Gelbein
  • Patent number: 7220886
    Abstract: A process for the production of propylene from the metathesis of ethylene and 2-butene is disclosed wherein a mixed C4 stream is first treated to enrich and separate the 2-butene from 1-butene and isobutene by isomerization of 1-butene and concurrent fractional distillation of the 2-butene and isobutene to provide the 2-butene feed the metathesis with ethylene. In addition the mixed C4 stream may be treated to remove mercaptans and dienes prior to 2-butene enrichment.
    Type: Grant
    Filed: October 27, 2004
    Date of Patent: May 22, 2007
    Assignee: Catalytic Distillation Technologies
    Inventors: Gary G. Podrebarac, John R. Adams, Arvids Judzis