Patents Assigned to Celgard LLC
  • Patent number: 10879514
    Abstract: The present invention is preferably directed to a polylactam ceramic coating for a microporous battery separator for a lithium ion secondary battery and a method of making this formulation and application of this formulation to make a coated microporous battery separator. The preferred inventive coating has excellent thermal and chemical stability, excellent adhesion to microporous base substrate, membrane, and/or electrode, improved binding properties to ceramic particles and/or has improved or excellent resistance to thermal shrinkage, dimensional integrity, and/or oxidation stability when used in a rechargeable lithium ion battery.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: December 29, 2020
    Assignee: Celgard, LLC
    Inventor: Insik Jeon
  • Patent number: 10826108
    Abstract: Disclosed or provided are high melt temperature microporous Lithium-ion rechargeable battery separators, shutdown high melt temperature battery separators, battery separators, membranes, composites, and the like that preferably prevent contact between the anode and cathode when the battery is maintained at elevated temperatures for a period of time, methods of making, testing and/or using such separators, membranes, composites, and the like, and/or batteries, Lithium-ion rechargeable batteries, and the like including one or more such separators, membranes, composites, and the like.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: November 3, 2020
    Assignee: Celgard, LLC
    Inventors: C. Glen Wensley, Carlos R. Negrete, Jill V. Watson
  • Patent number: 10818899
    Abstract: A battery separator comprises a co-extruded, microporous membrane having at least two layers made of extrudable polymers and having: a uniform thickness defined by a standard deviation of <0.80 microns (?m); or an interply adhesion as defined by a peel strength >60 grams.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: October 27, 2020
    Assignee: Celgard, LLC
    Inventors: Ronald W. Call, C. William Fulk, Jr., Lie Shi, Xiaomin Zhang, Khuy V. Nguyen
  • Publication number: 20200335759
    Abstract: New and/or improved coatings for porous substrates, including battery separators or separator membranes, and/or coated porous substrates, including coated battery separators, and/or batteries or cells including such coatings or coated separators, and/or related methods including methods of manufacture and/or of use thereof are disclosed. Also, new or improved coatings for porous substrates, including battery separators, which comprise at least a polymeric binder and heat-resistant particles with or without additional additives, materials or components, and/or to new or improved coated porous substrates, including battery separators, where the coating comprises at least a polymeric binder and heat-resistant particles with or without additional additives, materials or components are disclosed.
    Type: Application
    Filed: July 21, 2017
    Publication date: October 22, 2020
    Applicant: Celgard, LLC
    Inventors: Michael B. LANE, Insik JEON, Edward KRUGER, Xiang YU, Ronnie E. SMITH, Stefan REINARTZ, Junqing MA
  • Patent number: 10804516
    Abstract: Disclosed are embossed microporous membranes, as well as articles (e.g., battery separators, materials, textiles, composites, and laminates) comprising the embossed microporous membranes. Also provided are methods of making and/or using embossed microporous membranes.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: October 13, 2020
    Assignee: Celgard, LLC
    Inventors: Kristoffer K. Stokes, Karl F. Humiston
  • Patent number: 10790491
    Abstract: A membrane is a microporous sheet made of a blend of a first ultra high molecular weight polyolefin and a second ultra high molecular weight polyolefin. Each polyolefin has a molecular weight, both of those molecular weights are greater than 1 million, and one molecular weight is greater than the other. Additionally, the intrinsic viscosity (IV) of the membrane may be greater than or equal to 6.3.
    Type: Grant
    Filed: October 23, 2015
    Date of Patent: September 29, 2020
    Assignee: Celgard, LLC
    Inventors: Donald K. Simmons, Joseph G. Yaritz
  • Patent number: 10777800
    Abstract: Novel or improved microporous single or multilayer battery separator membranes, separators, batteries including such membranes or separators, methods of making such membranes, separators, and/or batteries, and/or methods of using such membranes, separators and/or batteries are provided. In accordance with at least certain embodiments, a multilayer dry process polyethylene/polypropylene/polyethylene microporous separator which is manufactured using the inventive process which includes machine direction stretching followed by transverse direction stretching and a subsequent calendering step as a means to reduce the thickness of the multilayer microporous membrane, to reduce the percent porosity of the multilayer microporous membrane in a controlled manner and/or to improve transverse direction tensile strength.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: September 15, 2020
    Assignee: Celgard, LLC
    Inventors: Kristoffer K. Stokes, William John Mason, Kang Karen Xiao, Xiaomin Zhang, Barry J. Summey, Robert Moran, Jeffrey Gordon Poley, Brian R. Stepp, Changqing Wang Adams, Daniel R. Alexander, Shante P. Williams, Andrew Edward Voss, Douglas George Robertson
  • Patent number: 10741814
    Abstract: In accordance with at least certain embodiments, the present invention is directed to novel, improved, coated, or treated separator membranes, separators or membrane based separators for lithium batteries. The membranes or separators may include non-woven layers, improved surfactant treatments, or combinations thereof. The separators or membranes are useful for solvent electrolyte lithium batteries, especially rechargeable lithium ion batteries, and provide improved performance, wettability, cycling ability, and/or recharging efficiency.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: August 11, 2020
    Assignee: Celgard, LLC
    Inventors: Changqing Wang Adams, C. Glen Wensley, Stefan Reinartz
  • Patent number: 10720623
    Abstract: Microporous battery separators, batteries including such separators, and/or methods of making such separators, and/or methods of using such separators are provided. A battery separator for a secondary or rechargeable lithium battery may have low electrical resistance of less than 0.95 ohm-cm2, or less than 0.8 ohm-cm2. The battery separator may provide a means to achieve an improved level of battery performance in a rechargeable or secondary lithium battery based on a possibly synergistic combination of low electrical resistance, low Gurley, low tortuosity, and/or a unique trapezoid shaped pore. In accordance with at least certain multilayer embodiments the inventive microporous battery separator may have excellent onset and rate of thermal shutdown performance.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: July 21, 2020
    Assignee: Celgard, LLC
    Inventors: Xiaomin Zhang, Lie Shi
  • Patent number: 10720624
    Abstract: Disclosed or provided are non-shutdown high melt temperature or ultra high melt temperature microporous battery separators, high melt temperature separators, battery separators, membranes, composites, and the like that preferably prevent contact between the anode and cathode when the battery is maintained at elevated temperatures for a period of time and preferably continue to provide a substantial level of battery function (ionic transfer, discharge) when the battery is maintained at elevated temperatures for a period of time, methods of making, testing and/or using such separators, membranes, composites, and the like, and/or batteries, high temperature batteries, and/or Lithium-ion rechargeable batteries including one or more such separators, membranes, composites, and the like.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: July 21, 2020
    Assignee: Celgard, LLC
    Inventors: Lie Shi, C. Glen Wensley, Jill V. Watson
  • Patent number: 10665839
    Abstract: The present invention relates to new, improved or modified polymer materials, membranes, substrates, and the like and to new, improved or modified methods for permanently modifying the physical and/or chemical nature of surfaces of the polymer substrate for a variety of end uses or applications. For example, one improved method uses a carbene and/or nitrene modifier to chemically modify a functionalized polymer to form a chemical species which can chemically react with the surface of a polymer substrate and alter its chemical reactivity. Such method may involve an insertion mechanism to modify the polymer substrate to increase or decrease its surface energy, polarity, hydrophilicity or hydrophobicity, oleophilicity or oleophobicity, and/or the like in order to improve the compatibility of the polymer substrate with, for example, coatings, materials, adjoining layers, and/or the like.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: May 26, 2020
    Assignee: Celgard, LLC
    Inventors: Kristoffer K. Stokes, Karl F. Humiston
  • Patent number: 10656195
    Abstract: A system for differentiating short circuiting in a battery includes: a detector coupled to the battery; a monitor in communication with the detector, the monitor including a profile of a battery shorting behavior, and a comparator for matching data from the detector to the profile; and a controller for taking action based upon information from the detector. A method for detecting short circuiting in a battery includes the steps of: detecting a behavior of the battery; comparing the behavior of the battery to a predetermined battery behavior profile; determining the type of short based on the comparison; and taking mitigating action based on the determination. The system/method may monitor: temperature of the battery, heat generation from the battery, current flow through the battery, voltage drop across the battery, and/or combinations thereof. The system/method discriminates between the various battery shorting behaviors for aggressive response or passive response.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: May 19, 2020
    Assignee: Celgard, LLC
    Inventors: Zhengming Zhang, Weifeng Fang
  • Patent number: 10615388
    Abstract: A membrane is a microporous sheet made of a blend of a first ultra high molecular weight polyolefin and a second ultra high molecular weight polyolefin. Each polyolefin has a molecular weight, both of those molecular weights are greater than 1 million, and one molecular weight is greater than the other. Additionally, the intrinsic viscosity (IV) of the membrane may be greater than or equal to 6.3.
    Type: Grant
    Filed: March 22, 2006
    Date of Patent: April 7, 2020
    Assignee: Celgard, LLC
    Inventors: Donald K. Simmons, Joseph G. Yaritz
  • Patent number: 10601012
    Abstract: A multi-layered battery separator for a lithium secondary battery includes a first layer of a dry processed membrane bonded to a second layer of a wet processed membrane. The first layer may be made of a polypropylene based resin. The second layer may be made of a polyethylene based resin. The separator may have more than two layers. The separator may have a ratio of TD/MD tensile strength in the range of about 1.5-3.0. The separator may have a thickness of about 35.0 microns or less. The separator may have a puncture strength of greater than about 630 gf. The separator may have a dielectric breakdown of at least about 2000V.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: March 24, 2020
    Assignee: Celgard, LLC
    Inventors: Lie Shi, Jill V. Watson, Ronald W. Call, Ronnie E. Smith
  • Patent number: 10559802
    Abstract: A battery separator for a secondary lithium battery includes a microporous/porous membrane with a ceramic coating of one or more layers, a layer may include one or more particles having an average particle size ranging from 0.01 ?m to 5 ?m and/or binders that include poly (sodium acrylate-acrylamide-acrylonitrile) copolymer.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: February 11, 2020
    Assignee: Celgard, LLC
    Inventors: Zhengming Zhang, Xuefa Li, Lie Shi, Premanand Ramadass, Paul M. Halmo, Xiaomin Zhang
  • Patent number: 10544521
    Abstract: In accordance with at least selected embodiments, the present invention is directed to novel, improved, or modified porous membranes, fibers, porous fibers, products made from such membranes, fibers or porous fibers, and/or related methods of production, use, and/or the like. In accordance with at least certain embodiments, the present invention is directed to novel, improved, or modified microporous membranes or films, fibers, microporous fibers, materials or layers made from such membranes, fibers or porous fibers, and the like for use in textile materials, garments, products, and/or textile related applications. Microporous membranes, fibers, and/or microporous fibers are made of one or more copolymers, such as block or impact copolymers, or of at least one polyolefin combined with at least one copolymer as a means of improving the hand, drape, and/or surface coefficient of friction performance properties for use in textile garments, textile materials or textile related applications.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: January 28, 2020
    Assignee: Celgard, LLC
    Inventors: Kristoffer K. Stokes, Xiaomin Zhang, Karl F. Humiston
  • Patent number: 10461293
    Abstract: In accordance with at least selected embodiments, novel or improved separator membranes, separators, batteries including such separators, methods of making such membranes and/or separators, and/or methods of using such membranes and/or separators are disclosed or provided. In accordance with at least certain embodiments, an ionized radiation treated microporous polyolefin, polyethylene (PE), copolymer, and/or polymer blend (e.g., a copolymer or blend comprising PE and another polymer, such as polypropylene (PP)) battery separator for a secondary or rechargeable lithium battery and/or a method of making an ionized radiation treated microporous battery separator is disclosed.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: October 29, 2019
    Assignee: Celgard, LLC
    Inventors: Changqing Wang Adams, Michael Bielmann, Zhengming Zhang
  • Patent number: 10347951
    Abstract: In accordance with at least selected aspects, objects or embodiments, optimized, novel or improved membranes, battery separators, batteries, and/or systems and/or related methods of manufacture, use and/or optimization are provided. In accordance with at least selected embodiments, the present invention is related to novel or improved battery separators that prevent dendrite growth, prevent internal shorts due to dendrite growth, or both, batteries incorporating such separators, systems incorporating such batteries, and/or related methods of manufacture, use and/or optimization thereof. In accordance with at least certain embodiments, the present invention is related to novel or improved ultra thin or super thin membranes or battery separators, and/or lithium primary batteries, cells or packs incorporating such separators, and/or systems incorporating such batteries, cells or packs.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: July 9, 2019
    Assignee: Celgard, LLC
    Inventors: Paul M. Halmo, Xiaomin Zhang, Paul D. Vido, Zhengming Zhang, Lie Shi, Daniel R. Alexander, Jill V. Watson
  • Patent number: 10347890
    Abstract: Disclosed herein are novel or improved microporous battery separator membranes, separators, batteries including such separators, methods of making such membranes, separators, and/or batteries, and/or methods of using such membranes, separators and/or batteries. Further disclosed are laminated multilayer polyolefin membranes with exterior layers comprising one or more polyethylenes, which exterior layers are designed to provide an exterior surface that has a low pin removal force. Further disclosed are battery separator membranes having increased electrolyte absorption capacity at the separator/electrode interface region, which may improve cycling. Further disclosed are battery separator membranes having improved adhesion to any number of coatings. Also described are battery separator membranes having a tunable thermal shutdown where the onset temperature of thermal shutdown may be raised or lowered and the rate of thermal shutdown may be changed or increased.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: July 9, 2019
    Assignee: Celgard, LLC
    Inventors: Xiaomin Zhang, Eric Robert White, Kang Karen Xiao, Robert A. Nark, Insik Jeon, Kristoffer K. Stokes, Paul Vido, Zhengming Zhang
  • Patent number: RE47520
    Abstract: The instant invention is directed to a separator for a high energy rechargeable lithium battery and the corresponding battery. The separator includes a ceramic composite layer and a polymeric microporous layer. The ceramic layers includes a mixture of inorganic particles and a matrix material. The ceramic layer is adapted, at least, to block dendrite growth and to prevent electronic shorting. The polymeric layer is adapted, at least, to block ionic flow between the anode and the cathode in the event of thermal runaway.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: July 16, 2019
    Assignee: Celgard, LLC
    Inventor: Zhengming Zhang