Patents Assigned to CelLink Corporation
  • Publication number: 20220311103
    Abstract: Provided are multilayered flexible battery interconnects for interconnecting batteries in battery packs and methods of fabricating thereof. A multilayered flexible battery interconnect comprises insulating layers and two conductive layers, stacked together and positioned between the insulating layers. One conductive layer is thicker than the other. The thinner conductive layer comprises flexible tabs for connecting to batteries and, in some examples, comprises voltage sense traces. The smaller thickness of these flexible tabs ensures welding quality and allows using less energy during welding. The battery cell contacts, to which these flexible tabs are welded, can be significantly thicker. Furthermore, the smaller thickness enables fusible link integration into flexible tabs. At the same time, the two conductive layers collectively conduct current within the interconnect, with the thicker layer enhancing the overall current-carrying capacity.
    Type: Application
    Filed: March 24, 2022
    Publication date: September 29, 2022
    Applicant: CelLink Corporation
    Inventors: Will Findlay, Mark Terlaak, Kevin Michael Coakley, Malcolm Parker Brown, Emily Hernandez
  • Publication number: 20220109258
    Abstract: Described herein are circuit assemblies comprising flexible interconnect circuits and/or other components connected to these circuits. In some examples, conductive elements of different circuits are connected with support structures, such as rivets. Furthermore, conductive elements of the same circuit can be interconnected. In some examples, a conductive element of a circuit is connected to a printed circuit board (or other devices) using a conductor-joining structure. Interconnecting different circuits involves stacking these circuits such that the conductive element in one circuit overlaps with the conductive element in another circuit. A support structure protrudes through both conductive elements and any other components positioned in between, such as dielectric and/or adhesive layers. This structure electrically connects the conductive elements and also compresses the conductive elements toward each other. For example, a rivet is used with the rivet heads contacting one or two conductive elements, e.g.
    Type: Application
    Filed: October 1, 2021
    Publication date: April 7, 2022
    Applicant: CelLink Corporation
    Inventors: Kevin Michael Coakley, Emily Hernandez, Mark Terlaak, Malcolm Parker Brown
  • Publication number: 20220109256
    Abstract: A connector for connecting a flexible interconnect circuit comprises a base comprising a first set of protrusions and a second set of protrusions. The first set of protrusions and second set of protrusions are configured to secure the flexible interconnect circuit at a first set of apertures and a second set of apertures of the flexible interconnect circuit, respectively. The first set of protrusions may be positioned at a first distance from the second set of protrusions on the base. The first set of apertures may be positioned on the flexible interconnect circuit at a second distance, greater than the first distance, from the second set of apertures. The base causes the flexible interconnect circuit into an arched configuration when the apertures are secured to the respective protrusions. The connector further comprises a cover piece configured to secure the flexible interconnect circuit in the arched configuration.
    Type: Application
    Filed: September 28, 2021
    Publication date: April 7, 2022
    Applicant: CelLink Corporation
    Inventors: Kevin Michael Coakley, Emily Hernandez, Mark Terlaak
  • Publication number: 20220078902
    Abstract: Provided are flexible hybrid interconnect circuits and methods of forming thereof. A flexible hybrid interconnect circuit comprises multiple conductive layers, stacked and spaced apart along the thickness of the circuit. Each conductive layer comprises one or more conductive elements, one of which is operable as a high frequency (HF) signal line. Other conductive elements, in the same and other conductive layers, form an electromagnetic shield around the HF signal line. Some conductive elements in the same circuit are used for electrical power transmission. All conductive elements are supported by one or more inner dielectric layers and enclosed by outer dielectric layers. The overall stack is thin and flexible and may be conformally attached to a non-planar surface. Each conductive layer may be formed by patterning the same metallic sheet. Multiple pattern sheets are laminated together with inner and outer dielectric layers to form a flexible hybrid interconnect circuit.
    Type: Application
    Filed: November 17, 2021
    Publication date: March 10, 2022
    Applicant: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcolm Parker Brown, Jose Juarez, Emily Hernandez, Joseph Pratt, Peter Stone, Vidya Viswanath, Will Findlay
  • Publication number: 20220006212
    Abstract: Provided are terminal-free connectors for flexible interconnect circuits. A connector comprises a housing chamber defined by at least a first side wall and a second side wall oppositely positioned about the base. An edge support is positioned at each of the first side wall and the second side wall. The edge supports allow for precise placement of the flexible interconnect circuit inside the housing chamber. A cover piece is coupled to the base via a first hinge, and is configured to move between a released position and a clamped position. The cover piece includes a clamp portion securing the flexible interconnect circuit against the edge supports in the clamped position. A slider may be configured to move between an extended position and an inserted position within the housing chamber, and may include a convex upper surface configured to urge the flexible interconnect circuit upwards in the inserted position.
    Type: Application
    Filed: July 22, 2021
    Publication date: January 6, 2022
    Applicant: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcolm Parker Brown, Mark Terlaak, Will Findlay
  • Patent number: 11206730
    Abstract: Provided are flexible hybrid interconnect circuits and methods of forming thereof. A flexible hybrid interconnect circuit comprises multiple conductive layers, stacked and spaced apart along the thickness of the circuit. Each conductive layer comprises one or more conductive elements, one of which is operable as a high frequency (HF) signal line. Other conductive elements, in the same and other conductive layers, form an electromagnetic shield around the HF signal line. Some conductive elements in the same circuit are used for electrical power transmission. All conductive elements are supported by one or more inner dielectric layers and enclosed by outer dielectric layers. The overall stack is thin and flexible and may be conformally attached to a non-planar surface. Each conductive layer may be formed by patterning the same metallic sheet. Multiple pattern sheets are laminated together with inner and outer dielectric layers to form a flexible hybrid interconnect circuit.
    Type: Grant
    Filed: November 17, 2020
    Date of Patent: December 21, 2021
    Assignee: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcolm Parker Brown, Jose Juarez, Emily Hernandez, Joseph Pratt, Peter Stone, Vidya Viswanath, Will Findlay
  • Publication number: 20210352798
    Abstract: Provided are interconnect circuits and methods of forming thereof. A method may involve laminating a substrate to a conductive layer followed by patterning the conductive layer. This patterning operation forms individual conductive portions, which may be also referred to as traces or conductive islands. The substrate supports these portions relative to each other during and after patterning. After patterning, an insulator may be laminated to the exposed surface of the patterned conductive layer. At this point, the conductive layer portions are also supported by the insulator, and the substrate may optionally be removed, e.g., together with undesirable portions of the conductive layer. Alternatively, the substrate may be retained as a component of the circuit and the undesirable portions of the patterned conductive layer may be removed separately. These approaches allow using new patterning techniques as well as new materials for substrates and/or insulators.
    Type: Application
    Filed: July 22, 2021
    Publication date: November 11, 2021
    Applicant: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcolm Parker Brown, Dongao Yang, Michael Lawrence Miller, Paul Henry Lego
  • Patent number: 11116070
    Abstract: Provided are interconnect circuits and methods of forming thereof. A method may involve laminating a substrate to a conductive layer followed by patterning the conductive layer. This patterning operation forms individual conductive portions, which may be also referred to as traces or conductive islands. The substrate supports these portions relative to each other during and after patterning. After patterning, an insulator may be laminated to the exposed surface of the patterned conductive layer. At this point, the conductive layer portions are also supported by the insulator, and the substrate may optionally be removed, e.g., together with undesirable portions of the conductive layer. Alternatively, the substrate may be retained as a component of the circuit and the undesirable portions of the patterned conductive layer may be removed separately. These approaches allow using new patterning techniques as well as new materials for substrates and/or insulators.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: September 7, 2021
    Assignee: CELLINK CORPORATION
    Inventors: Kevin Michael Coakley, Malcolm Parker Brown, Dongao Yang, Michael Lawrence Miller, Paul Henry Lego
  • Patent number: 11108175
    Abstract: Provided are terminal-free connectors for flexible interconnect circuits. A connector comprises a housing chamber defined by at least a first side wall and a second side wall oppositely positioned about the base. An edge support is positioned at each of the first side wall and the second side wall. The edge supports allow for precise placement of the flexible interconnect circuit inside the housing chamber. A cover piece is coupled to the base via a first hinge, and is configured to move between a released position and a clamped position. The cover piece includes a clamp portion securing the flexible interconnect circuit against the edge supports in the clamped position. A slider may be configured to move between an extended position and an inserted position within the housing chamber, and may include a convex upper surface configured to urge the flexible interconnect circuit upwards in the inserted position.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: August 31, 2021
    Assignee: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcolm Parker Brown, Mark Terlaak, Will Findlay
  • Publication number: 20210175588
    Abstract: Provided are interconnects for interconnecting a set of battery cells, assemblies comprising these interconnects, methods of forming such interconnects, and methods of forming such assemblies. An interconnect includes a conductor comprising two portions electrically isolated from each other. At least one portion may include two contacts for connecting to battery cells and a fuse forming an electrical connection between these two contacts. The interconnect may also include an insulator adhered to the conductor and mechanically supporting the two portions of the conductor. The insulator may include an opening such that the fuse overlaps with this opening, and the opening does not interfere with operation of the fuse. In some embodiments, the fuse may not directly interface with any other structures. Furthermore, the interconnect may include a temporary substrate adhered to the insulator such that the insulator is disposed between the temporary substrate and the conductor.
    Type: Application
    Filed: February 19, 2021
    Publication date: June 10, 2021
    Applicant: CelLink Corporation
    Inventors: KEVIN MICHAEL COAKLEY, Malcolm Brown, Paul Tsao
  • Patent number: 10964931
    Abstract: Provided are interconnects for interconnecting a set of battery cells, assemblies comprising these interconnects, methods of forming such interconnects, and methods of forming such assemblies. An interconnect includes a conductor comprising two portions electrically isolated from each other. At least one portion may include two contacts for connecting to battery cells and a fuse forming an electrical connection between these two contacts. The interconnect may also include an insulator adhered to the conductor and mechanically supporting the two portions of the conductor. The insulator may include an opening such that the fuse overlaps with this opening, and the opening does not interfere with operation of the fuse. In some embodiments, the fuse may not directly interface with any other structures. Furthermore, the interconnect may include a temporary substrate adhered to the insulator such that the insulator is disposed between the temporary substrate and the conductor.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: March 30, 2021
    Assignee: CELLINK CORPORATION
    Inventors: Kevin Michael Coakley, Malcolm Brown, Paul Tsao
  • Publication number: 20210076485
    Abstract: Provided are flexible hybrid interconnect circuits and methods of forming thereof. A flexible hybrid interconnect circuit comprises multiple conductive layers, stacked and spaced apart along the thickness of the circuit. Each conductive layer comprises one or more conductive elements, one of which is operable as a high frequency (HF) signal line. Other conductive elements, in the same and other conductive layers, form an electromagnetic shield around the HF signal line. Some conductive elements in the same circuit are used for electrical power transmission. All conductive elements are supported by one or more inner dielectric layers and enclosed by outer dielectric layers. The overall stack is thin and flexible and may be conformally attached to a non-planar surface. Each conductive layer may be formed by patterning the same metallic sheet. Multiple pattern sheets are laminated together with inner and outer dielectric layers to form a flexible hybrid interconnect circuit.
    Type: Application
    Filed: November 17, 2020
    Publication date: March 11, 2021
    Applicant: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcolm Parker Brown, Jose Juarez, Emily Hernandez, Joseph Pratt, Peter Stone, Vidya Viswanath, Will Findlay
  • Publication number: 20210021068
    Abstract: Provided are terminal-free connectors for flexible interconnect circuits. A connector for connecting to a flexible interconnect circuit comprises a base comprising a housing chamber defined by at least a first side wall and a second side wall that are oppositely positioned about the base. A circuit clamp is coupled to the base via a first hinge, and is configured to move between a released position and a clamped position. A cover piece is coupled to the base via a second hinge, and is configured to move between an open position and a closed position. The circuit clamp is configured to secure the flexible interconnect circuit between the base and the circuit clamp in the clamped position. One or more protrusions on the circuit clamp are each configured to interface with a socket within the first or second side wall to secure the circuit clamp in the clamped position.
    Type: Application
    Filed: July 27, 2020
    Publication date: January 21, 2021
    Applicant: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcolm Parker Brown, Mark Terlaak, Will Findlay
  • Publication number: 20210021066
    Abstract: Provided are terminal-free connectors for flexible interconnect circuits. A connector comprises a housing chamber defined by at least a first side wall and a second side wall oppositely positioned about the base. An edge support is positioned at each of the first side wall and the second side wall. The edge supports allow for precise placement of the flexible interconnect circuit inside the housing chamber. A cover piece is coupled to the base via a first hinge, and is configured to move between a released position and a clamped position. The cover piece includes a clamp portion securing the flexible interconnect circuit against the edge supports in the clamped position. A slider may be configured to move between an extended position and an inserted position within the housing chamber, and may include a convex upper surface configured to urge the flexible interconnect circuit upwards in the inserted position.
    Type: Application
    Filed: July 27, 2020
    Publication date: January 21, 2021
    Applicant: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcolm Parker Brown, Mark Terlaak, Will Findlay
  • Patent number: 10874015
    Abstract: Provided are flexible hybrid interconnect circuits and methods of forming thereof. A flexible hybrid interconnect circuit comprises multiple conductive layers, stacked and spaced apart along the thickness of the circuit. Each conductive layer comprises one or more conductive elements, one of which is operable as a high frequency (HF) signal line. Other conductive elements, in the same and other conductive layers, form an electromagnetic shield around the HF signal line. Some conductive elements in the same circuit are used for electrical power transmission. All conductive elements are supported by one or more inner dielectric layers and enclosed by outer dielectric layers. The overall stack is thin and flexible and may be conformally attached to a non-planar surface. Each conductive layer may be formed by patterning the same metallic sheet. Multiple pattern sheets are laminated together with inner and outer dielectric layers to form a flexible hybrid interconnect circuit.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: December 22, 2020
    Assignee: CELLINK CORPORATION
    Inventors: Kevin Michael Coakley, Malcolm Parker Brown, Jose Juarez, Emily Hernandez, Joseph Pratt, Peter Stone, Vidya Viswanath, Will Findlay
  • Publication number: 20200245449
    Abstract: Provided are flexible hybrid interconnect circuits and methods of forming thereof. A flexible hybrid interconnect circuit comprises multiple conductive layers, stacked and spaced apart along the thickness of the circuit. Each conductive layer comprises one or more conductive elements, one of which is operable as a high frequency (HF) signal line. Other conductive elements, in the same and other conductive layers, form an electromagnetic shield around the HF signal line. Some conductive elements in the same circuit are used for electrical power transmission. All conductive elements are supported by one or more inner dielectric layers and enclosed by outer dielectric layers. The overall stack is thin and flexible and may be conformally attached to a non-planar surface. Each conductive layer may be formed by patterning the same metallic sheet. Multiple pattern sheets are laminated together with inner and outer dielectric layers to form a flexible hybrid interconnect circuit.
    Type: Application
    Filed: April 16, 2020
    Publication date: July 30, 2020
    Applicant: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcolm Parker Brown, Jose Juarez, Emily Hernandez, Joseph Pratt, Peter Stone, Vidya Viswanath, Will Findlay
  • Patent number: 10694618
    Abstract: Provided are flexible hybrid interconnect circuits and methods of forming thereof. A flexible hybrid interconnect circuit comprises multiple conductive layers, stacked and spaced apart along the thickness of the circuit. Each conductive layer comprises one or more conductive elements, one of which is operable as a high frequency (HF) signal line. Other conductive elements, in the same and other conductive layers, form an electromagnetic shield around the HF signal line. Some conductive elements in the same circuit are used for electrical power transmission. All conductive elements are supported by one or more inner dielectric layers and enclosed by outer dielectric layers. The overall stack is thin and flexible and may be conformally attached to a non-planar surface. Each conductive layer may be formed by patterning the same metallic sheet. Multiple pattern sheets are laminated together with inner and outer dielectric layers to form a flexible hybrid interconnect circuit.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: June 23, 2020
    Assignee: CELLINK CORPORATION
    Inventors: Kevin Michael Coakley, Malcolm Parker Brown, Jose Juarez, Emily Hernandez, Joseph Pratt, Peter Stone, Vidya Viswanath, Will Findlay
  • Publication number: 20200137882
    Abstract: Provided are flexible hybrid interconnect circuits and methods of forming thereof. A flexible hybrid interconnect circuit comprises multiple conductive layers, stacked and spaced apart along the thickness of the circuit. Each conductive layer comprises one or more conductive elements, one of which is operable as a high frequency (HF) signal line. Other conductive elements, in the same and other conductive layers, form an electromagnetic shield around the HF signal line. Some conductive elements in the same circuit are used for electrical power transmission. All conductive elements are supported by one or more inner dielectric layers and enclosed by outer dielectric layers. The overall stack is thin and flexible and may be conformally attached to a non-planar surface. Each conductive layer may be formed by patterning the same metallic sheet. Multiple pattern sheets are laminated together with inner and outer dielectric layers to form a flexible hybrid interconnect circuit.
    Type: Application
    Filed: October 29, 2019
    Publication date: April 30, 2020
    Applicant: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcolm Parker Brown, Jose Juarez, Emily Hernandez, Joseph Pratt, Peter Stone, Vidya Viswanath, Will Findlay
  • Patent number: 10542616
    Abstract: Provided are interconnect circuits for combined electrical and thermal energy transfer to devices connected to these circuits. Also provided are methods of fabricating such interconnect circuits. An interconnect circuit may include an electro-thermal conductor and at least one insulator providing support to different portions of the conductor with respect to each other. The insulator may include one or more openings for electrical connections and/or heat exchange with the electro-thermal conductor. The portions of the conductor may be electrically isolated from each other in the final circuit. Initially, these portions may be formed from the same conductive sheet, such as a metal foil having a thickness of at least about 50 micrometers. This thickness ensures sufficient thermal transfer in addition to providing excellent electrical conductance. In some embodiments, the conductor may include a surface coating to protect its base material from oxidation, enhancing electrical connections, and/or other purposes.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: January 21, 2020
    Assignee: CELLINK CORPORATION
    Inventors: Kevin Michael Coakley, Malcolm Brown
  • Patent number: 10446956
    Abstract: Provided are electrical harness assemblies and methods of forming such harness assemblies. A harness assembly comprises a conductor trace, comprising a conductor lead with a width-to-thickness ratio of at least 2. This ratio provides for a lower thickness profile and enhances heat transfer from the harness to the environment. In some examples, a conductor trace may be formed from a thin sheet of metal. The same sheet may be used to form other components of the harness. The conductor trace also comprises a connecting end, monolithic with the conductor lead. The width-to-thickness ratio of the connecting end may be less than that of the conductor trace, allowing for the connecting end to be directly mechanically and electrically connected to a connector of the harness assembly. The connecting end may be folded, shaped, slit-rearranged, and the like to reduce its width-to-thickness ratio, which may be close to 1.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: October 15, 2019
    Assignee: CELLINK CORPORATION
    Inventors: Kevin Michael Coakley, Malcolm Brown, Jose Juarez, Dongao Yang