Patents Assigned to CelLink Corporation
  • Patent number: 10383207
    Abstract: Layers of conductive foil and insulating material are configured to interconnect an array of rear-contact solar cells. An embodiment provides that the layer of conductive foil may be patterned to form repeating sets of electrically isolated, interdigitated fingers. Each set of interdigitated fingers may be used to connect the positive polarity contacts of a first rear-contact solar cell to the negative polarity contacts of a second, adjacent rear-contact cell. The insulating layer is attached to the patterned conductive foil and provides mechanical support and/or electrical isolation. In some embodiments, a protective backsheet may be disposed beneath the conductive foil and/or insulating layer to provide further mechanical support and environmental protection. In some embodiments, the layers of conductive foil and insulating material may be incorporated as an interconnect circuit in a rear-contact PV module.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: August 13, 2019
    Assignee: CELLINK CORPORATION
    Inventor: Kevin Michael Coakley
  • Publication number: 20190229449
    Abstract: Provided are electrical harness assemblies and methods of forming such harness assemblies. A harness assembly comprises a conductor trace, comprising a conductor lead with a width-to-thickness ratio of at least 2. This ratio provides for a lower thickness profile and enhances heat transfer from the harness to the environment. In some examples, a conductor trace may be formed from a thin sheet of metal. The same sheet may be used to form other components of the harness. The conductor trace also comprises a connecting end, monolithic with the conductor lead. The width-to-thickness ratio of the connecting end may be less than that of the conductor trace, allowing for the connecting end to be directly mechanically and electrically connected to a connector of the harness assembly. The connecting end may be folded, shaped, slit-rearranged, and the like to reduce its width-to-thickness ratio, which may be close to 1.
    Type: Application
    Filed: April 1, 2019
    Publication date: July 25, 2019
    Applicant: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcolm Brown, Jose Juarez, Dongao Yang
  • Patent number: 10348009
    Abstract: Provided are electrical harness assemblies and methods of forming such harness assemblies. A harness assembly comprises a conductor trace, comprising a conductor lead with a width-to-thickness ratio of at least 2. This ratio provides for a lower thickness profile and enhances heat transfer from the harness to the environment. In some examples, a conductor trace may be formed from a thin sheet of metal. The same sheet may be used to form other components of the harness. The conductor trace also comprises a connecting end, monolithic with the conductor lead. The width-to-thickness ratio of the connecting end may be less than that of the conductor trace, allowing for the connecting end to be directly mechanically and electrically connected to a connector of the harness assembly. The connecting end may be folded, shaped, slit-rearranged, and the like to reduce its width-to-thickness ratio, which may be close to 1.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: July 9, 2019
    Assignee: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcolm Brown, Jose Juarez, Dongao Yang
  • Publication number: 20190148707
    Abstract: Provided are interconnects for interconnecting a set of battery cells, assemblies comprising these interconnects, methods of forming such interconnects, and methods of forming such assemblies. An interconnect includes a conductor comprising two portions electrically isolated from each other. At least one portion may include two contacts for connecting to battery cells and a fuse forming an electrical connection between these two contacts. The interconnect may also include an insulator adhered to the conductor and mechanically supporting the two portions of the conductor. The insulator may include an opening such that the fuse overlaps with this opening, and the opening does not interfere with operation of the fuse. In some embodiments, the fuse may not directly interface with any other structures. Furthermore, the interconnect may include a temporary substrate adhered to the insulator such that the insulator is disposed between the temporary substrate and the conductor.
    Type: Application
    Filed: December 20, 2018
    Publication date: May 16, 2019
    Applicant: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcolm Brown, Paul Tsao
  • Publication number: 20190098745
    Abstract: Provided are interconnect circuits for combined electrical and thermal energy transfer to devices connected to these circuits. Also provided are methods of fabricating such interconnect circuits. An interconnect circuit may include an electro-thermal conductor and at least one insulator providing support to different portions of the conductor with respect to each other. The insulator may include one or more openings for electrical connections and/or heat exchange with the electro-thermal conductor. The portions of the conductor may be electrically isolated from each other in the final circuit. Initially, these portions may be formed from the same conductive sheet, such as a metal foil having a thickness of at least about 50 micrometers. This thickness ensures sufficient thermal transfer in addition to providing excellent electrical conductance. In some embodiments, the conductor may include a surface coating to protect its base material from oxidation, enhancing electrical connections, and/or other purposes.
    Type: Application
    Filed: November 26, 2018
    Publication date: March 28, 2019
    Applicant: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcolm Brown
  • Patent number: 10211443
    Abstract: Provided are interconnects for interconnecting a set of battery cells, assemblies comprising these interconnects, methods of forming such interconnects, and methods of forming such assemblies. An interconnect includes a conductor comprising two portions electrically isolated from each other. At least one portion may include two contacts for connecting to battery cells and a fuse forming an electrical connection between these two contacts. The interconnect may also include an insulator adhered to the conductor and mechanically supporting the two portions of the conductor. The insulator may include an opening such that the fuse overlaps with this opening, and the opening does not interfere with operation of the fuse. In some embodiments, the fuse may not directly interface with any other structures. Furthermore, the interconnect may include a temporary substrate adhered to the insulator such that the insulator is disposed between the temporary substrate and the conductor.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: February 19, 2019
    Assignee: CELLINK CORPORATION
    Inventors: Kevin Michael Coakley, Malcolm Brown, Paul Tsao
  • Publication number: 20190051999
    Abstract: Provided are electrical harness assemblies and methods of forming such harness assemblies. A harness assembly comprises a conductor trace, comprising a conductor lead with a width-to-thickness ratio of at least 2. This ratio provides for a lower thickness profile and enhances heat transfer from the harness to the environment. In some examples, a conductor trace may be formed from a thin sheet of metal. The same sheet may be used to form other components of the harness. The conductor trace also comprises a connecting end, monolithic with the conductor lead. The width-to-thickness ratio of the connecting end may be less than that of the conductor trace, allowing for the connecting end to be directly mechanically and electrically connected to a connector of the harness assembly. The connecting end may be folded, shaped, slit-rearranged, and the like to reduce its width-to-thickness ratio, which may be close to 1.
    Type: Application
    Filed: October 18, 2018
    Publication date: February 14, 2019
    Applicant: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcolm Brown, Jose Juarez, Dongao Yang
  • Publication number: 20190021161
    Abstract: Provided are interconnect circuits and methods of forming thereof. A method may involve laminating a substrate to a conductive layer followed by patterning the conductive layer. This patterning operation forms individual conductive portions, which may be also referred to as traces or conductive islands. The substrate supports these portions relative to each other during and after patterning. After patterning, an insulator may be laminated to the exposed surface of the patterned conductive layer. At this point, the conductive layer portions are also supported by the insulator, and the substrate may optionally be removed, e.g., together with undesirable portions of the conductive layer. Alternatively, the substrate may be retained as a component of the circuit and the undesirable portions of the patterned conductive layer may be removed separately. These approaches allow using new patterning techniques as well as new materials for substrates and/or insulators.
    Type: Application
    Filed: July 13, 2018
    Publication date: January 17, 2019
    Applicant: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcolm Parker Brown, Dongao Yang, Michael Lawrence Miller, Paul Henry Lego
  • Patent number: 10172229
    Abstract: Provided are interconnect circuits for combined electrical and thermal energy transfer to devices connected to these circuits. Also provided are methods of fabricating such interconnect circuits. An interconnect circuit may include an electro-thermal conductor and at least one insulator providing support to different portions of the conductor with respect to each other. The insulator may include one or more openings for electrical connections and/or heat exchange with the electro-thermal conductor. The portions of the conductor may be electrically isolated from each other in the final circuit. Initially, these portions may be formed from the same conductive sheet, such as a metal foil having a thickness of at least about 50 micrometers. This thickness ensures sufficient thermal transfer in addition to providing excellent electrical conductance. In some embodiments, the conductor may include a surface coating to protect its base material from oxidation, enhancing electrical connections, and/or other purposes.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: January 1, 2019
    Assignee: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcolm Brown
  • Patent number: 10153570
    Abstract: Provided are electrical harness assemblies and methods of forming such harness assemblies. A harness assembly comprises a conductor trace, comprising a conductor lead with a width-to-thickness ratio of at least 2. This ratio provides for a lower thickness profile and enhances heat transfer from the harness to the environment. In some examples, a conductor trace may be formed from a thin sheet of metal. The same sheet may be used to form other components of the harness. The conductor trace also comprises a connecting end, monolithic with the conductor lead. The width-to-thickness ratio of the connecting end may be less than that of the conductor trace, allowing for the connecting end to be directly mechanically and electrically connected to a connector of the harness assembly. The connecting end may be folded, shaped, slit-rearranged, and the like to reduce its width-to-thickness ratio, which may be close to 1.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: December 11, 2018
    Assignee: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcolm Brown, Jose Juarez, Dongao Yang
  • Publication number: 20180301832
    Abstract: Provided are electrical harness assemblies and methods of forming such harness assemblies. A harness assembly comprises a conductor trace, comprising a conductor lead with a width-to-thickness ratio of at least 2. This ratio provides for a lower thickness profile and enhances heat transfer from the harness to the environment. In some examples, a conductor trace may be formed from a thin sheet of metal. The same sheet may be used to form other components of the harness. The conductor trace also comprises a connecting end, monolithic with the conductor lead. The width-to-thickness ratio of the connecting end may be less than that of the conductor trace, allowing for the connecting end to be directly mechanically and electrically connected to a connector of the harness assembly. The connecting end may be folded, shaped, slit-rearranged, and the like to reduce its width-to-thickness ratio, which may be close to 1.
    Type: Application
    Filed: April 13, 2018
    Publication date: October 18, 2018
    Applicant: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcolm Brown, Jose Juarez, Dongao Yang
  • Publication number: 20180063943
    Abstract: Provided are interconnect circuits for combined electrical and thermal energy transfer to devices connected to these circuits. Also provided are methods of fabricating such interconnect circuits. An interconnect circuit may include an electro-thermal conductor and at least one insulator providing support to different portions of the conductor with respect to each other. The insulator may include one or more openings for electrical connections and/or heat exchange with the electro-thermal conductor. The portions of the conductor may be electrically isolated from each other in the final circuit. Initially, these portions may be formed from the same conductive sheet, such as a metal foil having a thickness of at least about 50 micrometers. This thickness ensures sufficient thermal transfer in addition to providing excellent electrical conductance. In some embodiments, the conductor may include a surface coating to protect its base material from oxidation, enhancing electrical connections, and/or other purposes.
    Type: Application
    Filed: October 18, 2017
    Publication date: March 1, 2018
    Applicant: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcolm Brown
  • Patent number: 9844148
    Abstract: Provided are interconnect circuits for interconnecting arrays of devices and methods of forming these interconnect circuits as well as connecting these circuits to the devices. An interconnect circuit may include a conductive layer and one or more insulating layers. The conductive layer may be patterned with openings defining contact pads, such that each pad is used for connecting to a different electrical terminal of the interconnected devices. In some embodiments, each contact pad is attached to the rest of the conductive layer by a fusible link formed from the same conductive layer as the contact pad. The fusible link controls the current flow to and from this contact pad. The insulating layer is laminated to the conductive layer and provides support to the contacts pads. The insulating layer may also be patterned with openings, which allow forming electrical connections between the contact pads and cell terminals through the insulating layer.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: December 12, 2017
    Assignee: CelLink Corporation
    Inventors: Kevin Coakley, Malcolm Brown
  • Patent number: 9832857
    Abstract: Provided are interconnect circuits for combined electrical and thermal energy transfer to devices connected to these circuits. Also provided are methods of fabricating such interconnect circuits. An interconnect circuit may include an electro-thermal conductor and at least one insulator providing support to different portions of the conductor with respect to each other. The insulator may include one or more openings for electrical connections and/or heat exchange with the electro-thermal conductor. The portions of the conductor may be electrically isolated from each other in the final circuit. Initially, these portions may be formed from the same conductive sheet, such as a metal foil having a thickness of at least about 50 micrometers. This thickness ensures sufficient thermal transfer in addition to providing excellent electrical conductance. In some embodiments, the conductor may include a surface coating to protect its base material from oxidation, enhancing electrical connections, and/or other purposes.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: November 28, 2017
    Assignee: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcolm Brown
  • Publication number: 20170094802
    Abstract: Provided are interconnect circuits for interconnecting arrays of devices and methods of forming these interconnect circuits as well as connecting these circuits to the devices. An interconnect circuit may include a conductive layer and one or more insulating layers. The conductive layer may be patterned with openings defining contact pads, such that each pad is used for connecting to a different electrical terminal of the interconnected devices. In some embodiments, each contact pad is attached to the rest of the conductive layer by a fusible link formed from the same conductive layer as the contact pad. The fusible link controls the current flow to and from this contact pad. The insulating layer is laminated to the conductive layer and provides support to the contacts pads. The insulating layer may also be patterned with openings, which allow forming electrical connections between the contact pads and cell terminals through the insulating layer.
    Type: Application
    Filed: December 14, 2016
    Publication date: March 30, 2017
    Applicant: CelLink Corporation
    Inventors: Kevin Coakley, Malcolm Brown
  • Publication number: 20170077487
    Abstract: Provided are interconnects for interconnecting a set of battery cells, assemblies comprising these interconnects, methods of forming such interconnects, and methods of forming such assemblies. An interconnect includes a conductor comprising two portions electrically isolated from each other. At least one portion may include two contacts for connecting to battery cells and a fuse forming an electrical connection between these two contacts. The interconnect may also include an insulator adhered to the conductor and mechanically supporting the two portions of the conductor. The insulator may include an opening such that the fuse overlaps with this opening, and the opening does not interfere with operation of the fuse. In some embodiments, the fuse may not directly interface with any other structures. Furthermore, the interconnect may include a temporary substrate adhered to the insulator such that the insulator is disposed between the temporary substrate and the conductor.
    Type: Application
    Filed: October 7, 2016
    Publication date: March 16, 2017
    Applicant: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcolm Brown, Paul Tsoa
  • Publication number: 20170034902
    Abstract: Provided are interconnect circuits for combined electrical and thermal energy transfer to devices connected to these circuits. Also provided are methods of fabricating such interconnect circuits. An interconnect circuit may include an electro-thermal conductor and at least one insulator providing support to different portions of the conductor with respect to each other. The insulator may include one or more openings for electrical connections and/or heat exchange with the electro-thermal conductor. The portions of the conductor may be electrically isolated from each other in the final circuit. Initially, these portions may be formed from the same conductive sheet, such as a metal foil having a thickness of at least about 50 micrometers. This thickness ensures sufficient thermal transfer in addition to providing excellent electrical conductance. In some embodiments, the conductor may include a surface coating to protect its base material from oxidation, enhancing electrical connections, and/or other purposes.
    Type: Application
    Filed: September 8, 2016
    Publication date: February 2, 2017
    Applicant: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcolm Brown
  • Patent number: 9545010
    Abstract: Provided are interconnect circuits for interconnecting arrays of battery cells and methods of forming these interconnect circuits as well as connecting these circuits to the battery cells. An interconnect circuit may include a conductive layer and one or more insulating layers. The conductive layer may be patterned with openings defining contact pads, such that each pad is used for connecting to a different battery cell terminal. In some embodiments, each contact pad is attached to the rest of the conductive layer by a fusible link formed from the same conductive layer as the contact pad. The fusible link controls the current flow to and from this contact pad. The insulating layer is laminated to the conductive layer and provides support to the contacts pads. The insulating layer may also be patterned with openings, which allow forming electrical connections between the contact pads and cell terminals through the insulating layer.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: January 10, 2017
    Assignee: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcolm Brown
  • Patent number: 9466777
    Abstract: Provided are interconnect circuits for combined electrical and thermal energy transfer to devices connected to these circuits. Also provided are methods of fabricating such interconnect circuits. An interconnect circuit may include an electro-thermal conductor and at least one insulator providing support to different portions of the conductor with respect to each other. The insulator may include one or more openings for electrical connections and/or heat exchange with the electro-thermal conductor. The portions of the conductor may be electrically isolated from each other in the final circuit. Initially, these portions may be formed from the same conductive sheet, such as a metal foil having a thickness of at least about 50 micrometers. This thickness ensures sufficient thermal transfer in addition to providing excellent electrical conductance. In some embodiments, the conductor may include a surface coating to protect its base material from oxidation, enhancing electrical connections, and/or other purposes.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: October 11, 2016
    Assignee: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcolm Brown
  • Publication number: 20160225969
    Abstract: Provided are interconnect circuits for combined electrical and thermal energy transfer to devices connected to these circuits. Also provided are methods of fabricating such interconnect circuits. An interconnect circuit may include an electro-thermal conductor and at least one insulator providing support to different portions of the conductor with respect to each other. The insulator may include one or more openings for electrical connections and/or heat exchange with the electro-thermal conductor. The portions of the conductor may be electrically isolated from each other in the final circuit. Initially, these portions may be formed from the same conductive sheet, such as a metal foil having a thickness of at least about 50 micrometers. This thickness ensures sufficient thermal transfer in addition to providing excellent electrical conductance. In some embodiments, the conductor may include a surface coating to protect its base material from oxidation, enhancing electrical connections, and/or other purposes.
    Type: Application
    Filed: February 3, 2016
    Publication date: August 4, 2016
    Applicant: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcolm Brown