Patents Assigned to Chemetall GmbH
  • Publication number: 20140041693
    Abstract: The demulsifying cleaning of metallic surfaces which may be contaminated with oil(s) with at least one further nonpolar organic compound, with fat(s), with soap(s), with particulate dirt or with at least one anionic organic compound using an aqueous, alkaline, surfactant-containing bath solutions.
    Type: Application
    Filed: October 16, 2013
    Publication date: February 13, 2014
    Applicant: Chemetall GmbH
    Inventors: Stella BAUEROCHSE, Carola KOMP, Ralph VAN DEN BERG, Peter CLAUDE, Franz DRESSLER, Joachim GELDNER, Zafer YUKSEL, Eckart SCHONFELDER
  • Publication number: 20140004266
    Abstract: A method for electroless coating of a substrate by applying an activating coat of polyelectrolyte or salt with a first aqueous composition, rinsing of the activating coat such that the activating coat is not entirely removed The activated surface that has remained after rinsing is then contacted with an aqueous composition in the form of a solution, emulsion or suspension to form an organic secondary coat (precipitation coat), and drying. The activating coat contains at least one cationic polyelectrolyte or at least one cationic salt in solution in water. The aqueous composition which forms the secondary coat contains constituents which can be precipitated, deposited and/or salted out and which are anionically, zwitterionically, sterically or cationically stabilized. The dry film formed in the process, which is made of the activating coat and the secondary coat, has a thickness of at least 1 ?m.
    Type: Application
    Filed: September 12, 2011
    Publication date: January 2, 2014
    Applicant: CHEMETALL GMBH
    Inventors: Daniel Wasserfallen, Michael Schwamb, Cindy Ettrich, Vera Sotke, Martin Droll, Oliver Seewald, Wolfgang Bremser, Aliaksandr Frankel
  • Publication number: 20130344310
    Abstract: A method for electroless coating of substrates by applying an activating coat of polyelectrolyte or salt with a first aqueous composition; rinsing the activating coat such that the activating coat not being entirely removed; contacting and coating of the activated surfaces that have remained after rinsing with an aqueous composition in the form of a solution, emulsion or suspension, to form an organic secondary coat; and drying. The activating coat is a solution, emulsion or suspension containing a anionic polyelectrolyte or at least one anionic salt in solution in water. The aqueous composition forming the secondary coat has constituents which can be precipitated, deposited or salted out and which are anionically, zwitterionically, sterically or cationically stabilized. The dry film formed in the process, comprising the activating coat and the secondary coat, has a thickness of at least 1 ?m.
    Type: Application
    Filed: September 12, 2011
    Publication date: December 26, 2013
    Applicant: Chemetall GmbH
    Inventors: Daniel Wasserfallen, Michael Schwamb, Cindy Ettrich, Vera Sotke, Martin Droll, Oliver Seewald, Wolfgang Bremser, Aliaksandr Frenkel
  • Patent number: 8609195
    Abstract: The demulsifying cleaning of metallic surfaces which may be contaminated with oil(s) with at least one further nonpolar organic compound, with fat(s), with soap(s), with particulate dirt or with at least one anionic organic compound using an aqueous, alkaline, surfactant-containing bath solutions.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: December 17, 2013
    Assignee: Chemetall GmbH
    Inventors: Stella Bauerochse, Carola Komp, Ralph Van Den Berg, Peter Claude, Franz Dressler, Joachim Geldner, Zafer Yuksel, Eckart Schonfelder
  • Publication number: 20130295292
    Abstract: The present invention relates to an aqueous composition for pretreating a metallic surface before further coating or for treating said surface. The aqueous composition is obtained by adding a) at least [one] sodium, potassium, and/or ammonium water glass and b) at least one silane to water. The quantity ratio of a) to b), in each case including the resulting reaction products, is preferably in the range of 0.1:1 to 2:1.
    Type: Application
    Filed: October 26, 2011
    Publication date: November 7, 2013
    Applicant: CHEMETALL GMBH
    Inventors: Saule Bukeikhanova, Mathias Komander
  • Publication number: 20130284049
    Abstract: An inorganic chromium-free metal surface treatment agent contains a compound X containing a metal X1, ionic species of which containing the metal X1 become cations in an aqueous solution, and a compound Y containing a metal Y1, ionic species of which containing the metal Y1 become anions in an aqueous solution, a total content of the compound X being from 0.01 to 10% by mass, a total content of the compound Y being from 0.01 to 10% by mass, a molar ratio of the metal X1 in the cation and the metal Y1 in the anion being from 0.1 to 5, the metal X1 being at least one member selected from the group consisting of Ti, Zr and Al, the metal Y1 being at least one member selected from the group consisting of Ti, Zr, Si, B and Al, and the metal surface treatment agent containing substantially no organic resin.
    Type: Application
    Filed: June 8, 2011
    Publication date: October 31, 2013
    Applicant: CHEMETALL GMBH
    Inventors: Yusuke Miura, Toshiaki Shimakura
  • Publication number: 20130244026
    Abstract: A metal material is contacted with a treatment solution containing zirconium and/or titanium compound, and a polyamine compound having a number average molecular weight from 150 to 500,000 and containing from 0.1 mmol to 17 mmol of primary and/or secondary amino group per 1 g of solid content and at least one siloxane unit. Concentration of zirconium and/or titanium compound in the metal surface treatment composition is from 10 ppm to 10,000 ppm with respect to the metal element, and mass ratio of the zirconium and/or titanium element is from 0.1 to 100 with respect to the polyamine compound. The metal material is washed with water after contacted by the treatment solution.
    Type: Application
    Filed: September 13, 2012
    Publication date: September 19, 2013
    Applicants: Chemetall GmbH, NIPPON PAINT CO., LTD.
    Inventors: Toshio Inbe, Thomas Kolberg
  • Publication number: 20130181160
    Abstract: The invention relates to a stabilized lithium metal powder and to a method for producing the same, the stabilized, pure lithium metal powder having been passivated in an organic inert solvent under dispersal conditions with fatty acids or fatty acid esters according to the general formula (I) R—COOR?, in which R stands for C10-C29 groups and R? for H or C1-C8 groups.
    Type: Application
    Filed: September 28, 2011
    Publication date: July 18, 2013
    Applicant: Chemetall GmbH
    Inventor: Ulrich Wietelmann
  • Publication number: 20130142721
    Abstract: The invention relates to solutions of Lewis acids selected from the halogen-containing Lewis acids of the elements of groups 12 and 13 from the periodic table of elements, or mixtures of said Lewis acids, in aprotic, asymmetrically substituted ethers or in solvent mixtures that contain asymmetrically substituted ethers and hydrocarbons, to the production of the solutions according to the invention, and to the use in inorganic, organic and organometallic syntheses.
    Type: Application
    Filed: March 14, 2011
    Publication date: June 6, 2013
    Applicant: Chemetall GmbH
    Inventors: Ulrich Wietelmann, Alexander Murso, Sebastian Lang
  • Publication number: 20130143071
    Abstract: The invention relates to a process for treating a metallic surface of an object with an aqueous copper-plating solution, with which a first copper-plating solution, which is free of cyanide and free of strong reducing agent, is electrolessly applied to clean metallic surfaces of the object, or after pretreatment to cleaned metallic surfaces, to form a first copper layer or copper alloy layer as a barrier layer and/or as a conductive layer, and also to the use of the objects produced by the process according to the invention.
    Type: Application
    Filed: August 10, 2011
    Publication date: June 6, 2013
    Applicant: CHEMETALL GMBH
    Inventor: Michael Kleinle
  • Publication number: 20130122318
    Abstract: A surface-passivated lithium metal, which has a composite top layer containing or consisting of at least two poorly soluble components containing lithium. Production of the surface-passivated lithium metal such that lithium metal below 180° C., thus in the solid state, is transformed into an inert, aprotic solvent with a passivating agent of the general formula Li[P(C2O4)?x/2 Fx] where x=0, 2, or 4 is also disclosed.
    Type: Application
    Filed: November 16, 2010
    Publication date: May 16, 2013
    Applicant: Chemetall GMBH
    Inventor: Ulrich Wietelmann
  • Patent number: 8436093
    Abstract: A metal surface treatment composition including at least one compound selected from the group consisting of a zirconium compound and a titanium compound, and an organosiloxane, which is a polycondensate of organosilane and has in a molecule thereof of at least two amino groups, in which the Degree of polycondensation of the organosiloxane is at least 40%, the content of at least one compound selected from the group consisting of the zirconium compound and the titanium compound is predetermined content, the content of the organosiloxane in the metal surface treatment composition is predetermined content, and the mass ratio of at least one element selected from the group consisting of the zirconium element and the titanium element contained in the zirconium compound and the titanium compound, respectively, to the silicon element contained in the organosiloxane is a predetermined ratio.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: May 7, 2013
    Assignees: Nippon Paint Co., Ltd., Chemetall GmbH
    Inventors: Toshio Inbe, Thomas Kolberg
  • Patent number: 8430972
    Abstract: A metal surface treatment composition including at least one compound selected from the group consisting of a zirconium compound and a titanium compound, and an organosiloxane, which is a polycondensate of organosilane and has in a molecule thereof of at least two amino groups, in which the Degree of polycondensation of the organosiloxane is at least 40%, the content of at least one compound selected from the group consisting of the zirconium compound and the titanium compound is predetermined content, the content of the organosiloxane in the metal surface treatment composition is predetermined content, and the mass ratio of at least one element selected from the group consisting of the zirconium element and the titanium element contained in the zirconium compound and the titanium compound, respectively, to the silicon element contained in the organosiloxane is a predetermined ratio.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: April 30, 2013
    Assignees: Nippon Paint Co., Ltd., Chemetall GmbH
    Inventors: Toshio Inbe, Thomas Kolberg
  • Patent number: 8409661
    Abstract: A process for producing a repair coating on a metallic surface coated with a corrosion protecting coating A applied with a pretreatment composition, an organic composition or a silicon compound containing composition. Corrosion protecting coating A has been at least partially removed in the area Z, and a thin corrosion protecting coating B containing a silicon compound is applied with a solution or dispersion containing a silane, a silanol, a siloxane, a polysiloxane or a mixture thereof on at least a part of the area Z. A further corrosion protecting coating C which is generated with an organic composition like a primer, a wet-primer, an e-coat, a powder coat, a base-coat or a clear-coat or a composition which is the same or another siloxane composition as for the thin film B may also be applied to coating B.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: April 2, 2013
    Assignee: Chemetall GmbH
    Inventors: Mats Eriksson, Manfred Walter
  • Publication number: 20130062575
    Abstract: Metal imide compounds as anode materials for lithium batteries and galvanic elements with a high storage capacity. Metal imide compounds as highly capacitive anode materials for lithium batteries. The invention relates to a galvanic element, an anode material for use in a galvanic element and method for producing an active electrode material.
    Type: Application
    Filed: March 31, 2011
    Publication date: March 14, 2013
    Applicant: CHEMETALL GMBH
    Inventor: Ulrich Wietelmann
  • Patent number: 8349092
    Abstract: A method for treating or pre-treating parts, profiled-pieces, strips, sheet metals or wires having metallic surfaces, in which at least 5% of these surfaces consists of aluminum or of at least one aluminum alloy with an acid aqueous solution which contains fluoride, zinc and phosphate and which has the following dissolved contents in the phosphatizing solution: sodium virtually none, from 0.04 to less than 2 g/L; potassium virtually none or in a concentration ranging from 0.025 to 2.5 g/L; sodium and potassium in a concentration ranging from 0.025 to 2.5 g/L as sodium, whereby the potassium content is converted to sodium on a molar basis; zinc 0.2 to 4 g/L zinc, 5 to 65 g/L calculated as PO4; 0.03 to 0.5 g/L phosphate free fluoride wherein the total fluoride is present in a concentration ranging from 0.1 to 5 g/L. A zinc-containing phosphate layer is thereby deposited onto the metallic surfaces with a layer weight ranging from 0.5 to 10 g/m2.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: January 8, 2013
    Assignee: Chemetall GmbH
    Inventors: Jürgen Specht, Peter Schubach, Rüdiger Rein, Peter Claude
  • Patent number: 8318987
    Abstract: The present invention relates to a process for the preparation of lithium alcoholates solution.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: November 27, 2012
    Assignee: Chemetall GmbH
    Inventors: Dirk Dawidowski, Ulrich Wietelmann, Peter Rittmeyer
  • Publication number: 20120261033
    Abstract: Disclosed is an easily handleable composition for metal surface treatment which enables to achieve foundation surface concealment, coating adhesion and corrosion resistance equal to or higher than those obtained by the conventional metal surface treatment compositions. This composition for metal surface treatment places no burden on the environment. Also disclosed are a method for treating the surface of a metal material wherein such a composition for metal surface treatment is used, and a metal material treated by such a metal surface treatment method. Specifically disclosed is a metal surface treatment composition used for a treatment of a metal surface, which composition contains a zirconium compound and/or titanium compound substantially not containing fluorine, and an inorganic acid and/or a salt thereof. This metal surface treatment composition has a pH of not less than 1.5 but not more than 6.5.
    Type: Application
    Filed: May 24, 2012
    Publication date: October 18, 2012
    Applicant: Chemetall GmbH
    Inventors: Toshio Inbe, Thomas Kolberg
  • Patent number: 8287662
    Abstract: A composition for metal surface treatment can form a chemical conversion coating film which achieves sufficient foundation surface concealment, coating adhesion and corrosion resistance. A method for treating the surface of a metal material with such a composition for metal surface treatment is used. Specifically a metal surface treatment composition used for a treatment of a metal surface, contains a zirconium compound and/or a titanium compound, and a polyamine compound having a number average molecular weight of not less than 150 but not more than 500,000. The polyamine compound contains not less than 0.1 millimole but not more than 17 millimoles of a primary and/or secondary amino group per 1 g of the solid content, and the content of the zirconium compound and/or titanium compound in the metal surface treatment composition is not less than 10 ppm but not more than 10,000 ppm in terms of metal elements.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: October 16, 2012
    Assignees: Nippon Paint Co., Ltd., Chemetall GmbH
    Inventors: Toshio Inbe, Thomas Kolberg
  • Patent number: 8262809
    Abstract: An easily handleable composition for metal surface treatment is provided which achieves foundation surface concealment, coating adhesion and corrosion resistance equal to or higher than those obtained by the conventional metal surface treatment compositions. This composition for metal surface treatment places no burden on the environment. A method for treating the surface of a metal material in which such a composition for metal surface treatment is used, and a metal material treated by such a metal surface treatment method, are also provided. Specifically disclosed is a metal surface treatment composition used for a treatment of a metal surface, which composition contains a zirconium compound and/or titanium compound substantially not containing fluorine, and an inorganic acid and/or a salt thereof. This metal surface treatment composition has a pH of not less than 1.5 but not more than 6.5.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: September 11, 2012
    Assignee: Chemetall GmbH
    Inventors: Toshio Inbe, Thomas Kolberg