Patents Assigned to Chevron Phillip Chemical Company, LP
  • Publication number: 20230407183
    Abstract: This disclosure relates to the production of chemicals and plastics using pyrolysis oil from the pyrolysis of plastic waste as a co-feedstock along with a petroleum-based, fossil fuel-based, or bio-based feedstock. In an aspect, the polymers and chemicals produced according to this disclosure can be certified under International Sustainability and Carbon Certification (ISCC) provisions as circular polymers and chemicals at any point along complex chemical reaction pathways. The use of a mass balance approach which attributes the pounds of pyrolyzed plastic products derived from pyrolysis oil to any output stream of a given unit has been developed, which permits ISCC certification agency approval.
    Type: Application
    Filed: August 15, 2023
    Publication date: December 21, 2023
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Ronald G. ABBOTT, Scott G. MORRISON, Steven R. HORLACHER, Jamie N. SUTHERLAND, Bruce D. MURRAY, Jacob M. HILBRICH, Charles T. POLITO
  • Patent number: 11845716
    Abstract: Processes for removing carbon disulfide from product streams containing a sulfide compound are performed by contacting the product stream with an alkanolamine and converting the carbon disulfide to a higher boiling point product, thereby reducing or eliminating carbon disulfide from the product stream. Subsequent removal of the higher boiling point product via distillation can lead to a purified sulfide stream with high purity.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: December 19, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Kenneth M. Lassen, Michael S. Matson, Daniel M. Hasenberg, Dave C. Schwierman
  • Patent number: 11845717
    Abstract: Isomerized olefin products are produced by contacting an olefin feed containing a C10 to C20 normal alpha olefin, a solid acid catalyst, and a C2 to C15 primary ester to form the isomerized olefin product. Typical primary esters used in the processes include formates and acetates. Linear olefin compositions are produced that contain at least 80 wt. % C10 to C20 linear internal olefins, less than 8 wt. % C10 to C20 normal alpha olefins, less than 8 wt. % dimers of C10 to C20 olefins, less than 15 wt. % C10 to C20 branched olefins, and at least 1 wt. % C2 to C15 primary ester and less than 8 wt. % secondary esters.
    Type: Grant
    Filed: August 24, 2022
    Date of Patent: December 19, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventor: Jeffery C. Gee
  • Patent number: 11845815
    Abstract: Apparatuses and processes that produce multimodal polyolefins, and in particular, polyethylene resins, are disclosed herein. This is accomplished by using two reactors in series, where one of the reactors is a multi-zone circulating reactor that can circulate polyolefin particles through two polymerization zones optionally having two different flow regimes so that the final multimodal polyolefin has improved product properties and improved product homogeneity.
    Type: Grant
    Filed: January 9, 2023
    Date of Patent: December 19, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Joseph A. Curren, Rebecca A. Gonzales, Scott E. Kufeld, Joel A. Mutchler, Eric J. Netemeyer, Jamie N. Sutherland, Paul J. Deslauriers, Jeffrey S. Fodor
  • Patent number: 11845075
    Abstract: A rotary feeder having a stationary, cylindrical housing having disposed therein a number of injection nozzles, and within which rotate a plurality of vanes about a central axis, wherein pairs of adjacent vanes of the plurality of vanes define wedge volumes, wherein the housing extends a width along the central axis, wherein each of the vanes has a length along the central axis, and wherein the injection nozzles are positioned across the width of the housing, such that a spray pattern of a gas injected via the number of injection nozzles spans substantially the entire length of the vanes.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: December 19, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Andrea L. Hoener, Elena Mathopoullos, Jorge Garza
  • Patent number: 11845814
    Abstract: Polymerization processes and reactor systems for producing multimodal ethylene polymers are disclosed in which at least one loop reactor and at least one fluidized bed reactor are utilized. Configurations include a loop reactor in series with a fluidized bed reactor and two loop reactors in series with a fluidized bed reactor.
    Type: Grant
    Filed: February 1, 2022
    Date of Patent: December 19, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Joel A. Mutchler, Eric J. Netemeyer, Joseph A. Curren, Michael H. Treptau, Kenneth A. Dooley, Jeffrey S. Lowell, Jeffrey S. Fodor, Scott E. Kufeld
  • Patent number: 11845047
    Abstract: Systems and methods for improved mixing, including baffle systems, reactor systems, and methods of using the same are provided herein. These baffle systems include a ring having an exterior surface defining an outer diameter and an outer circumference, an interior surface defining an inner diameter and an inner circumference, a top surface, a bottom surface, and an axis; and one or more substantially vertical baffles extending from the interior surface of the ring toward the axis.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: December 19, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Ralph J. Price, Kenneth A. Dooley
  • Patent number: 11845826
    Abstract: Methods for preparing a metallocene-based catalyst composition that can impact the long chain branching of ethylene homopolymers and copolymers produced using the catalyst composition are described. The catalyst composition can be prepared by contacting a metallocene compound, a hydrocarbon solvent, and a first organoaluminum compound for a first period of time to form a metallocene solution, and then contacting the metallocene solution with an activator-support and a second organoaluminum compound for a second period of time to form the catalyst composition.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: December 19, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Max P. McDaniel, Tony R. Crain
  • Publication number: 20230399419
    Abstract: A polyolefin reactor flashline heater system may include an enclosure, a heating section, and a transformer. The heating section is contained in the enclosure and extends between a first end and a second end. The first end is fluidically coupled to a polyolefin reactor product inlet. The second end is fluidically coupled to a heated product outlet. One or more pipe sections are coupled in series between the first end and the second end. The one or more pipe sections are formed of an electrically conducting material and have a predetermined diameter to transport a polyolefin reactor stream from the first end to the second end. The transformer is electrically coupled to the first end and the second end and configured to heat the heating section by impedance heating. A polymerization system may include a polyolefin reactor coupled to the polyolefin reactor flashline heater system.
    Type: Application
    Filed: May 20, 2022
    Publication date: December 14, 2023
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Ai-Fu Chang, Hetian Li, Christina Barry
  • Patent number: 11839870
    Abstract: Supported chromium catalysts with an average valence less than +6 and having a hydrocarbon-containing or halogenated hydrocarbon-containing ligand attached to at least one bonding site on the chromium are disclosed, as well as ethylene-based polymers with terminal alkane, aromatic, or halogenated hydrocarbon chain ends. Another ethylene polymer characterized by at least 2 wt. % of the polymer having a molecular weight greater than 1,000,000 g/mol and at least 1.5 wt. % of the polymer having a molecular weight less than 1000 g/mol is provided, as well as an ethylene homopolymer with at least 3.5 methyl short chain branches and less than 0.6 butyl short chain branches per 1000 total carbon atoms.
    Type: Grant
    Filed: May 5, 2022
    Date of Patent: December 12, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Masud M. Monwar, Carlos A. Cruz, Jared L. Barr, Max P. McDaniel
  • Patent number: 11833479
    Abstract: Disclosed are a process and system for preparing a catalyst slurry. The process can include preparing a catalyst slurry comprising a solid particulate catalyst and a carrier liquid in a catalyst slurry preparation system. The catalyst slurry preparation system can include a mixing vessel, a rotatable impeller system connected to the mixing vessel, and a motor connected to the rotatable impeller system. The rotatable impeller system can include an agitator shaft and a hub connected to the agitator shaft. The hub and at least a portion of the agitator shaft are positioned within the mixing vessel along a longitudinal axis of the mixing vessel, and the hub has at least three blades.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: December 5, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: James E. Hein, Scott E. Kufeld
  • Patent number: 11834594
    Abstract: Techniques for drilling wellbores are described. The techniques include a) introducing a drilling fluid composition into a borehole defined by a formation; b) introducing a thinner composition including at least one tannin and at least one metal salt into the borehole; and c) contacting the thinner composition and the drilling fluid composition in the borehole, wherein the at least one tannin and at least one metal salt are not complexed ex situ. The at least one metal salt includes at least one copper salt, at least one zinc salt, or both at least one copper salt and at least one zinc salt.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: December 5, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Marshall D. Bishop, Johnnie E. Anderson
  • Patent number: 11826751
    Abstract: Disclosed is a flow bypass device, a reactor system containing the flow bypass device; a method for operating a fixed bed of solid particles in which gas is re-routed to an interior of the fixed bed, for example, the flow bypass device is used to bypass a portion of the solid particles; and a method for loading solid particles and a flow bypass device into a vessel. The methods and systems can use a single flow bypass device or multiple flow bypass devices that are stacked on top of one another.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: November 28, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventor: Steven R. Horlacher
  • Publication number: 20230374166
    Abstract: A purge system for a polymerization system may include a purge column including a stripping zone and a stripping fluid distributor below the stripping zone for injecting a stripping fluid including one or more light olefins. A first displacement zone is below the distributor. A second displacement zone is below the first displacement zone. A nitrogen distributor introduces nitrogen in the second displacement zone. Another purge system for a polymerization system may include a fluidized bed separator and a purge column. The fluidized bed separator includes a separator inlet, a stripping fluid inlet, a first stripped fluid outlet, and a separator outlet. The purge column includes a flake inlet, a stripping zone, a stripping fluid distributor below the stripping zone, a stripped flake outlet, and a second stripped fluid outlet for a second stripped fluid from the purge column.
    Type: Application
    Filed: May 20, 2022
    Publication date: November 23, 2023
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Kenneth A. Dooley, Jeffrey S. Lowell, Joseph A. Curren, Rebecca A. Gonzales
  • Patent number: 11820740
    Abstract: Processes and reaction systems for olefin metathesis by reactive distillation, utilizing liquid phase metathesis of reactant olefins in the presence of a homogeneous metathesis catalyst system, where the light metathesis product is produced and leaves the liquid phase as vapor phase and the heavy metathesis product is produced in liquid phase. Separation can be performed on the light metathesis product and a distinct other separation can be performed on the heavy metathesis product.
    Type: Grant
    Filed: August 22, 2022
    Date of Patent: November 21, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Wei Qi, Enrique Mancillas, Jeffery C Gee, Sean K. McLaughlin, Jared Fern, Steven Bischof, Paul Hobson
  • Patent number: 11814455
    Abstract: Ethylene-based polymers are generally characterized by a high load melt index of less than 12 g/10 min, a weight-average molecular weight from 200,000 to 550,000 g/mol, a number-average molecular weight from 18,000 to 48,000 g/mol, a CY-a parameter of less than 0.12, a tan ? at 0.1 sec?1 from 0.5 to 0.9 degrees, a tan ? at 100 sec?1 from 0.5 to 0.75 degrees, and a viscosity at 0.001 sec?1 from 1.3×106 to 1×107 Pa-sec. These ethylene polymers can be produced by peroxide-treating a bimodal molecular weight distribution dual metallocene-catalyzed resin, and can be used to produce blow molded bottles and other blow molded products.
    Type: Grant
    Filed: September 27, 2022
    Date of Patent: November 14, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Carlos A. Cruz, Yongwoo Inn, John R. Rathman, Youlu Yu, Ashish M. Sukhadia, Jay M. Chaffin
  • Patent number: 11814449
    Abstract: Supported chromium catalysts containing a solid oxide and 0.1 to 15 wt. % chromium, in which the solid oxide or the supported chromium catalyst has a particle size span from 0.5 to 1.4, less than 3 wt. % has a particle size greater than 100 ?m, and less than 10 wt. % has a particle size less than 10 ?m, can be contacted with an olefin monomer in a loop slurry reactor to produce an olefin polymer. Representative ethylene-based polymers produced using the chromium catalysts have a HLMI of 4 to 70 g/10 min, a density from 0.93 to 0.96 g/cm3, from 150 to 680 ppm solid oxide (such as silica), from 1.5 to 6.8 ppm chromium, and a film gel count of less than 15 catalyst particle gels per ft2 of 25 micron thick film and/or a gel count of less than or equal to 50 catalyst particles of greater than 100 ?m per five grams of the ethylene polymer.
    Type: Grant
    Filed: October 13, 2022
    Date of Patent: November 14, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Carlton E. Ash, Kathy S. Clear, Eric D. Schwerdtfeger, Carlos A. Cruz, Jeremy M. Praetorius, Youlu Yu
  • Patent number: 11814804
    Abstract: Systems for removing debris from a water reservoir include a moveable floating skimmer device positioned within the water reservoir and configured to receive floating debris, the skimmer device comprising an adjustable weir for capturing the debris and a receptacle for containing the debris; a discharge pipe connected to the skimmer device, the discharge pipe configured to receive the debris and a first portion of water from the receptacle in the skimmer device; a debris separator fluidly connected to the discharge pipe and configured to receive the debris and the first portion of water from the discharge pipe, the debris separator further configured to separate the debris from the first portion of water; a pump positioned between the discharge pipe and the debris separator and configured to transport the debris and the first portion of water in the discharge pipe to the debris separator via a pump outlet; and a recycle line connected to the debris separator and configured to return a second portion of water
    Type: Grant
    Filed: December 1, 2021
    Date of Patent: November 14, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Gerald P. Bergeron, Amy E. Hudson
  • Patent number: 11814457
    Abstract: Catalyst compositions containing a metallocene compound, a solid activator, and a co-catalyst, in which the solid activator or the supported metallocene catalyst has a d50 average particle size of 15 to 50 ?m and a particle size distribution of 0.5 to 1.5, can be contacted with an olefin in a loop slurry reactor to produce an olefin polymer. A representative ethylene-based polymer produced using the catalyst composition has excellent dart impact strength and low gels, and can be characterized by a HLMI from 4 to 10 g/10 min, a density from 0.944 to 0.955 g/cm3, a higher molecular weight component with a Mn from 280,000 to 440,000 g/mol, and a lower molecular weight component with a Mw from 30,000 to 45,000 g/mol and a ratio of Mz/Mw ranging from 2.3 to 3.4.
    Type: Grant
    Filed: February 10, 2023
    Date of Patent: November 14, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Carlton E. Ash, Kathy S. Clear, Eric D. Schwerdtfeger, Carlos A. Cruz, Jeremy M. Praetorius
  • Patent number: 11814343
    Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed in which the hydrocarbon reactant and either a supported chromium (VI) catalyst or a supported chromium (II) catalyst are contacted, optionally with UV-visible light irradiation, followed by exposure to an oxidizing atmosphere and then hydrolysis to form a reaction product containing the alcohol compound and/or the carbonyl compound. The presence of oxygen significant increases the amount of alcohol/carbonyl product formed, as well as the formation of oxygenated dimers and trimers of certain hydrocarbon reactants.
    Type: Grant
    Filed: June 3, 2022
    Date of Patent: November 14, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jared L. Barr, Carlos A. Cruz, Masud M. Monwar, Max P. McDaniel, Kathy S. Clear