Patents Assigned to Chevron Phillip Chemical Company, LP
  • Patent number: 11814569
    Abstract: A drilling fluid may include a carrier and a lubricant composition. The lubricant composition includes ethylene bottoms heavy pyrolysis oil. For example, the heavy pyrolysis oil may be bottoms of a fractionated fuel oil product separated from ethylene gas produced by a cracking of a hydrocarbon feedstock in a furnace.
    Type: Grant
    Filed: March 18, 2022
    Date of Patent: November 14, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Elan Watson, Christopher B. Jackson, Marshall D. Bishop
  • Patent number: 11801502
    Abstract: Methods for modifying a catalyst system component are disclosed in which a feed mixture containing a fluid and from 1 to 15 wt. % of a catalyst system component is introduced into an inlet of a hydrocyclone, an overflow stream containing from 0.1 to 5 wt. % solids and an underflow stream containing from 10 to 40 wt. % solids are discharged from the hydrocyclone, and the underflow stream is spray dried to form a modified catalyst component. Often, from 4 to 20 wt. % of the catalyst system component in the feed mixture has a particle size of less than or equal to 20 ?m, or less than or equal to 10 ?m.
    Type: Grant
    Filed: September 12, 2022
    Date of Patent: October 31, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Mark Scott, Evan Merk, Carlos A. Cruz, Mitchell D. Refvik, Max P. McDaniel
  • Patent number: 11801490
    Abstract: A method comprising a) drying a support material comprising silica at temperature in the range of from about 150° C. to about 220° C. to form a dried support; b) contacting the dried support with methanol to form a slurried support; c) subsequent to b), cooling the slurried support to a temperature of less than about 60° C. to form a cooled slurried support; d) subsequent to c), contacting the cooled slurried support with a titanium alkoxide to form a titanated support; and e) thermally treating the titanated support by heating to a temperature of equal to or greater than about 150° C. for a time period of from about 5 hours to about 30 hours to remove the methanol and yield a dried titanated support.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: October 31, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jeremy M. Praetorius, Eric D. Schwerdtfeger, Max P. McDaniel, Ted H. Cymbaluk, Connor D. Boxell, Alan L Solenberger, Kathy S. Clear
  • Patent number: 11802250
    Abstract: A system for processing plastic waste may include a feed line, a feed fractionator, a hydrotreater, a catalytic reforming unit, a heavy oil cracker, and a steam cracker. A pyrolyzed plastics feed is separated into light, medium, and heavy hydrocarbon streams. The hydrotreater removes sulfur, and the catalytic reforming unit produces a circular aromatic-rich stream. The heavy oil cracker generates cracked streams. The steam cracker produces a circular olefin stream from a cracked stream. A system for processing plastic waste may include the feed line, the feed fractionator, the hydrotreater, a medium hydrocarbon fractionator, the catalytic reforming unit, a full-range reforming unit, the heavy oil cracker, and the steam cracker. The medium hydrocarbon fractionator produces two hydrocarbon streams. The full-range naphtha reforming unit produces a second circular aromatic-rich stream.
    Type: Grant
    Filed: November 10, 2022
    Date of Patent: October 31, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Bruce D. Murray, Scott G. Morrison, Kenneth Fountain, Steven R. Horlacher, Vincent D. Mcgahee, Reza Khankal, David Dockter
  • Patent number: 11802865
    Abstract: A method of analyzing a polymer resin comprising: providing a polymer resin sample having two or more polymer components; subjecting the sample to aTREF analysis to yield aTREF elution trace by contacting the sample with aTREF solvent to form sample solution; introducing sample solution into aTREF column and allowing elution of polymer components at different elution rates along the column; eluting from the aTREF column an aTREF eluent comprising the polymer components eluting at different rates; and subjecting the aTREF eluent to IR detection to yield the aTREF elution trace; identifying the components of the sample to yield identified components by comparing the elution trace with an identification library that comprises a plurality of known polymer aTREF elution traces correlated with known polymer components characterized by identifying parameters (density, SCB, crystallization temperature, MI, HLMI, MWD); and quantifying each of the identified components to yield quantified polymer components via chemome
    Type: Grant
    Filed: December 27, 2021
    Date of Patent: October 31, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: JaNeille K. Dixon, Todd A. Robinson, James A. Solis, Justin W. Kamplain
  • Publication number: 20230330652
    Abstract: Disclosed is a heteroatomic ligand-metal compound complex transition-state model which has been developed for activity, purity, and/or selectivity for selective ethylene oligomerizations, and density functional theory calculations for determining heteroatomic ligand-metal compound complex reactivity, product purity, and/or selectivity for ethylene trimerizations and/or tetramerizations. Using reaction ground states and transition states, and/or reaction ground states and transition states in combination with the energetic span model, this disclosure reveals that a chromium chromacycle mechanism, there are multiple ground states and multiple transition states, which can account for activity, purity, and/or selectivity for selective ethylene oligomerizations.
    Type: Application
    Filed: June 9, 2021
    Publication date: October 19, 2023
    Applicant: Chevron Phillips Chemical Company, LP
    Inventors: Steven M. Bischof, Uriah J. Kilgore, Orson L. Sydora, Daniel H. Ess, Doo-Hyun Kwon, Nicholas K. Rollins
  • Patent number: 11780786
    Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed in which the hydrocarbon reactant and a supported transition metal catalyst—containing molybdenum, tungsten, or vanadium—are irradiated with a light beam at a wavelength in the UV-visible spectrum, optionally in an oxidizing atmosphere, to form a reduced transition metal catalyst, followed by hydrolyzing the reduced transition metal catalyst to form a reaction product containing the alcohol compound and/or the carbonyl compound.
    Type: Grant
    Filed: September 9, 2021
    Date of Patent: October 10, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Masud M. Monwar, Jared L. Barr, Carlos A. Cruz, Kathy S. Clear, Max P. McDaniel, William Chad Ellis
  • Patent number: 11781073
    Abstract: This disclosure relates to the production of chemicals and plastics using pyrolysis oil from the pyrolysis of plastic waste as a co-feedstock along with a petroleum-based or fossil fuel co-feed, or as a feedstock in the absence of a petroleum-based or fossil fuel co-feed. A mass balance accounting approach is employed to attribute the pounds of pyrolyzed plastic products derived from pyrolysis oil to any output stream of a given unit, which permits assigning circular product credit to product streams. In an aspect, the polymers and chemicals produced according to this disclosure can be certified under International Sustainability and Carbon Certification (ISCC) provisions as circular polymers and chemicals at any point along complex chemical reaction pathways.
    Type: Grant
    Filed: November 8, 2022
    Date of Patent: October 10, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Ronald G. Abbott, Scott G. Morrison, Steven R. Horlacher, Jamie N. Sutherland, Bruce D. Murray, Jacob M. Hilbrich, Charles T. Polito
  • Patent number: 11773036
    Abstract: Disclosed herein are processes and reaction systems for controlling a temperature of an oligomerization reaction zone using a heat exchange system.
    Type: Grant
    Filed: February 8, 2023
    Date of Patent: October 3, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventor: Bruce E. Kreischer
  • Patent number: 11773198
    Abstract: Methods of controlling olefin polymerization reactor systems may include a) selecting n input variables, each input variable corresponding to a process condition for an olefin polymerization process; b) identifying m response variables corresponding to a measurable polymer property; c) adjusting one of more of the n input variables using the olefin polymerization reactor system and measuring each of the m response variables as a function of the input variables for olefin polymers; d) analyzing the change in each of the response variables as a function of the input variables to determine coefficients; e) calculating a Response Surface Model (RSM) for each response variable determined in step d); f) applying n selected input variables to the calculated RSM to predict one or more of m target response variables; and g) using the n selected input variables to operate the olefin polymerization reactor system and provide a polyolefin product.
    Type: Grant
    Filed: September 9, 2022
    Date of Patent: October 3, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Paul J. DesLauriers, Jeff S. Fodor, Eric J. Netemeyer, Qing Yang
  • Patent number: 11767279
    Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed, and these processes include the steps of irradiating the hydrocarbon reactant and a supported chromium catalyst comprising chromium in a hexavalent oxidation state with a light beam at a wavelength in the UV-visible spectrum to reduce at least a portion of the supported chromium catalyst to form a reduced chromium catalyst, and hydrolyzing the reduced chromium catalyst to form a reaction product comprising the alcohol compound and/or the carbonyl compound. In addition, these processes can further comprise a step of calcining all or a portion of the reduced chromium catalyst to regenerate the supported chromium catalyst.
    Type: Grant
    Filed: July 14, 2022
    Date of Patent: September 26, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Carlos A. Cruz, Masud M. Monwar, Jared L. Barr, William C. Ellis
  • Patent number: 11767378
    Abstract: Polymerization processes and reactor systems for producing multimodal ethylene polymers are disclosed in which at least one loop reactor and at least one fluidized bed reactor are utilized. Configurations include a loop reactor in series with a fluidized bed reactor and two loop reactors in series with a fluidized bed reactor.
    Type: Grant
    Filed: September 23, 2022
    Date of Patent: September 26, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Joel A. Mutchler, Eric J. Netemeyer, Joseph A. Curren, Michael H. Treptau, Kenneth A. Dooley, Jeffrey S. Lowell, Jeffrey S. Fodor, Scott E. Kufeld
  • Publication number: 20230295524
    Abstract: A pyrolysis oil fractionation system for treating a pyrolysis oil feed includes a fractionation column, at least one treatment catalyst bed, and a plurality of distillation trays. The system further includes a condenser to receive a light fraction and produce a condensed gasoline product and a vapor, a receiver coupled to the condenser, a knockout drum, and a distillate stripper coupled to the fractionation column. A method for treating a pyrolysis oil feed includes, in a fractionating column, dehydrohalogenating, decontaminating, and/or dehydrating a pyrolysis oil feed in at least one treatment catalyst bed, and distilling the treated pyrolysis oil feed into a light fraction, a middle fraction, a heavy fraction, and a bottom fraction. The method further includes condensing the light fraction and producing a condensed gasoline product and a vapor, separating a fuel gas product from the vapor, and stripping the middle fraction to produce a distillate product.
    Type: Application
    Filed: March 16, 2022
    Publication date: September 21, 2023
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventor: Steven R. Horlacher
  • Patent number: 11761120
    Abstract: Disclosed herein are high melt flow polypropylene homopolymers generally characterized by a melt flow rate ranging from 200 g/10 min to 3000 g/10 min, a ratio of Mw/Mn ranging from 2 to 5, and a peak melting point ranging from 138° C. to 151° C. These polypropylene homopolymers can be produced by catalyst systems containing a racemic ansa-bis(indenyl)zirconocene compound, an activator-support, and an organoaluminum co-catalyst.
    Type: Grant
    Filed: October 12, 2020
    Date of Patent: September 19, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Graham R. Lief, Eric J. Haschke
  • Patent number: 11753358
    Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed, and these processes include the steps of forming a supported chromium catalyst comprising chromium in a hexavalent oxidation state, irradiating the hydrocarbon reactant and the supported chromium catalyst with a light beam at a wavelength in the UV-visible spectrum to reduce at least a portion of the supported chromium catalyst to form a reduced chromium catalyst, and hydrolyzing the reduced chromium catalyst to form a reaction product comprising the alcohol compound and/or the carbonyl compound. The supported chromium catalyst can be formed by heat treating a supported chromium precursor, contacting a chromium precursor with a solid support while heat treating, or heat treating a solid support and then contacting a chromium precursor with the solid support.
    Type: Grant
    Filed: July 19, 2022
    Date of Patent: September 12, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Carlos A. Cruz, Masud M. Monwar, Max P. McDaniel, Jared Barr, Kathy S. Clear, William C. Ellis
  • Patent number: 11753488
    Abstract: Methods for preparing metallocene-based catalyst compositions include the steps of contacting an alcohol compound and an organoaluminum compound for a first period of time to form a precontacted mixture, and contacting the precontacted mixture with an activator-support and a metallocene compound for a second period of time to form the catalyst composition. Such catalyst compositions can contain an activator-support, a metallocene compound, an organoaluminum compound, and a dialkyl aluminum alkoxide, and these catalyst compositions have increased catalytic activity for the polymerization of olefins.
    Type: Grant
    Filed: June 24, 2022
    Date of Patent: September 12, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Ryan N. Rose, Max P. McDaniel, Zhihui Gu
  • Patent number: 11753356
    Abstract: Methods for determining ethylene concentration in an ethylene oligomerization reactor using an ultrasonic flow meter are described, and these methods are integrated into ethylene oligomerization processes and related oligomerization reactor systems.
    Type: Grant
    Filed: November 22, 2022
    Date of Patent: September 12, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Bruce E. Kreischer, Kendall M. Hurst, Eric D. Schwerdtfeger, Steven M. Bischof, Jared Fern, Kent E. Mitchell, James Hillier
  • Patent number: 11746071
    Abstract: Metathesis of olefins in a loop reactor having liquid reaction medium circulated therein that contains reactant olefins and homogeneous metathesis catalyst system in liquid phase. Recovery of product olefin(s) occurs after removing a liquid reactor effluent from the loop reactor, and unreacted reactant olefin(s) recovered from the liquid reactor effluent can be recycled to the loop reactor.
    Type: Grant
    Filed: October 3, 2022
    Date of Patent: September 5, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Wei Qi, Enrique Mancillas, Jeffery C. Gee, Sean K. McLaughlin, Jared Fern, Steven Bischof, Paul Hobson
  • Patent number: 11746297
    Abstract: This disclosure relates to the production of chemicals and plastics using pyrolysis oil from the pyrolysis of plastic waste as a co-feedstock along with a petroleum-based, fossil fuel-based, or bio-based feedstock. In an aspect, the polymers and chemicals produced according to this disclosure can be certified under International Sustainability and Carbon Certification (ISCC) provisions as circular polymers and chemicals at any point along complex chemical reaction pathways. The use of a mass balance approach which attributes the pounds of pyrolyzed plastic products derived from pyrolysis oil to any output stream of a given unit has been developed, which permits ISCC certification agency approval.
    Type: Grant
    Filed: February 23, 2023
    Date of Patent: September 5, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Ronald G. Abbott, Scott G. Morrison, Steven R. Horlacher, Jamie N. Sutherland, Bruce D. Murray, Jacob M. Hilbrich, Charles T. Polito
  • Patent number: 11735293
    Abstract: Methods for simultaneously determining the concentrations of transition metal compounds in solutions containing two or more transition metal compounds are described. Polymerization reactor systems providing real-time monitoring and control of the concentrations of the transition metal components of a multicomponent catalyst system are disclosed, as well as methods for operating such polymerization reactor systems, and for improving methods of preparing the multicomponent catalyst system.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: August 22, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Richard M. Buck, Qing Yang