Patents Assigned to Chevron Phillips Chemicals Company LP
  • Patent number: 11958745
    Abstract: Processes and systems that utilize methane pyrolysis for carbon capture from a petrochemical stream that contains hydrogen and methane. The petrochemical stream can be the tail gas of a hydrocarbon cracking system, or any other petrochemical stream containing hydrogen and methane. The petrochemical stream can be separated into a hydrogen product stream and a methane product stream, before sending the methane product stream to a methane pyrolysis unit. The methane pyrolysis unit converts methane to solid carbon and hydrogen.
    Type: Grant
    Filed: March 7, 2023
    Date of Patent: April 16, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: James Hillier, Michael S. Webster-Gardiner
  • Patent number: 11955674
    Abstract: Processes and systems that utilize a fuel cell for carbon capture from a petrochemical stream that contains hydrogen and methane. The petrochemical stream can be the tail gas of a hydrocarbon cracking system, or any other petrochemical stream containing hydrogen and methane. The petrochemical stream can be separated into a hydrogen product stream and a methane product stream, before sending the methane product stream to the fuel cell. The fuel cell converts methane to carbon dioxide and hydrogen to water, while generating electricity that can be used to power equipment.
    Type: Grant
    Filed: March 7, 2023
    Date of Patent: April 9, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventor: James Hillier
  • Patent number: 11945770
    Abstract: The present disclosure provides for processes and systems for the purification of alkyl sulfide product streams including dimethyl sulfide (DMS). In some aspects, the disclosure provides for the removal of carbon disulfide (CS2) from DMS via hydrolytic catalysis. In further embodiments, the disclosed catalytic processes are performed using mixed-metal catalyst systems such as cobalt-molybdenum (CoMo) and nickel-molybdenum (NiMo) catalyst systems.
    Type: Grant
    Filed: March 6, 2023
    Date of Patent: April 2, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Kenneth M. Lassen, Ugochukwu Nwagwu, Jonathan Powell, Daniel M. Hasenberg
  • Patent number: 11945771
    Abstract: Depolymerization processes and systems for converting polyolefin waste and other waste plastic to hydrocarbons, specifically liquid and gaseous depolymerization reaction products. A depolymerization or catalytic pyrolysis process can be conducted on a process feed which includes a polyolefin waste and a hydrocarbon co-feed under depolymerization conditions, including contacting the reactor feed with a depolymerization catalyst such as a zeolite-based catalyst. The resulting reactor effluent subsequently can be used as feeds or co-feeds for making circular products such as circular ethylene and circular polyethylene.
    Type: Grant
    Filed: November 1, 2022
    Date of Patent: April 2, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Cori Demmelmaier-Chang, Mark L. Hlavinka, Sikander Hakim, Gabriela Alvez, Joseph Bergmeister, Steven Lim
  • Patent number: 11945897
    Abstract: Methods for preparing a metallocene-based catalyst composition that can impact the long chain branching of ethylene homopolymers and copolymers produced using the catalyst composition are described. The catalyst composition can be prepared by contacting a metallocene compound, a hydrocarbon solvent, and a first organoaluminum compound for a first period of time to form a metallocene solution, and then contacting the metallocene solution with an activator-support and a second organoaluminum compound for a second period of time to form the catalyst composition.
    Type: Grant
    Filed: October 18, 2023
    Date of Patent: April 2, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Max P. McDaniel, Tony R. Crain
  • Patent number: 11945938
    Abstract: Ethylene-based polymers are characterized by a density from 0.92 to 0.955 g/cm3, a HLMI of less than 35 g/10 min, and a ratio of a number of short chain branches (SCBs) per 1000 total carbon atoms at Mz to a number of SCBs per 1000 total carbon atoms at Mn in a range from 11.5 to 22. These polymers can have a higher molecular weight (HMW) component and a lower molecular weight (LMW) component, in which a ratio of a number of SCBs per 1000 total carbon atoms at Mn of the HMW component to a number of SCBs per 1000 total carbon atoms at Mn of the LMW component is in a range from 10.5 to 22. These ethylene polymers can be produced using a dual catalyst system containing an unbridged metallocene compound with an indenyl group having at least one halogen-substituted hydrocarbyl substituent with at least two halogen atoms, and a single atom bridged metallocene compound with a fluorenyl group and a cyclopentadienyl group.
    Type: Grant
    Filed: April 20, 2023
    Date of Patent: April 2, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Graham R. Lief, Qing Yang, Youlu Yu
  • Patent number: 11939542
    Abstract: A system for processing plastic waste may include a feed line, a feed fractionator, a hydrotreater, a catalytic reforming unit, a heavy oil cracker, and a steam cracker. A pyrolyzed plastics feed is separated into light, medium, and heavy hydrocarbon streams. The hydrotreater removes sulfur, and the catalytic reforming unit produces a circular aromatic-rich stream. The heavy oil cracker generates cracked streams. The steam cracker produces a circular olefin stream from a cracked stream. A system for processing plastic waste may include the feed line, the feed fractionator, the hydrotreater, a medium hydrocarbon fractionator, the catalytic reforming unit, a full-range reforming unit, the heavy oil cracker, and the steam cracker. The medium hydrocarbon fractionator produces two hydrocarbon streams. The full-range naphtha reforming unit produces a second circular aromatic-rich stream.
    Type: Grant
    Filed: September 11, 2023
    Date of Patent: March 26, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Bruce D. Murray, Scott G. Morrison, Kenneth Fountain, Steven R. Horlacher, Vincent D. Mcgahee, Reza Khankal, David Dockter
  • Patent number: 11932817
    Abstract: The present disclosure generally relates to systems, methods, and processes for catalytic hydrocarbon reformation.
    Type: Grant
    Filed: February 13, 2023
    Date of Patent: March 19, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Ryan W. Snell, Vincent D. McGahee
  • Patent number: 11920089
    Abstract: Pyrolysis processes comprise contacting a waste polyolefin with a solid catalyst at a pyrolysis temperature to form a pyrolysis product containing C1-C10 hydrocarbons. In some instances, the solid catalyst can be a silica-coated alumina, a fluorided silica-coated alumina, or a sulfated alumina, while in other instances, the solid catalyst can be any suitable solid oxide or chemically-treated solid oxide that is characterized by a d50 average particle size from 5 to 12 ?m and a particle size span from 0.7 to 1.7. Hydrocarbon compositions are formed from the pyrolysis of waste polyolefins with specific amounts of methane and higher carbon number hydrocarbons.
    Type: Grant
    Filed: May 11, 2023
    Date of Patent: March 5, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: David W. Dockter, Max P. McDaniel, Kathy S. Clear
  • Patent number: 11912809
    Abstract: Fluorided silica-coated alumina activator-supports have a bulk density from 0.15 to g/mL, a total pore volume from 0.85 to 2 mL/g, a BET surface area from 200 to 500 m2/g, an average pore diameter from 10 to 25 nm, and from 80 to 99% of pore volume in pores with diameters of greater than 6 nm. Methods of making the fluorided silica-coated alumina activator-supports and using the fluorided silica-coated aluminas in catalyst compositions and olefin polymerization processes also are described. Representative ethylene-based polymers produced using the compositions and processes have a melt index of 0.1 to 10 g/10 min and a density of 0.91 to 0.96 g/cm3, and contain from 70 to 270 ppm solid oxide and from 2 to 18 ppm fluorine.
    Type: Grant
    Filed: June 1, 2023
    Date of Patent: February 27, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Eric D. Schwerdtfeger, Qing Yang, Carlos A. Cruz, Jinping J. Zhou, Anand Ramanathan, Kathy S. Clear, Zhihui Gu
  • Patent number: 11884614
    Abstract: An alpha olefin synthesis process includes (i) subjecting a first normal alpha olefin to hydroformylation in the presence of carbon monoxide and hydrogen to form a first linear aldehyde, (ii) subjecting the first linear aldehyde to decarbonylative olefination to form a linear internal olefin, (iii) subjecting the linear internal olefin to isomerization-hydroformylation in the presence of carbon monoxide and hydrogen to form a second linear aldehyde, and (iv) subjecting the second linear aldehyde to hydrogenation to form a linear alcohol followed by dehydration to form a second normal alpha olefin, or subjecting the second linear aldehyde to combined hydrogenation-dehydration in a single step to form a second normal alpha olefin. Using this process, for example, ethylene can be converted to 1-hexene, and 1-butene can be converted to 1-decene.
    Type: Grant
    Filed: May 26, 2022
    Date of Patent: January 30, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Brooke L. Small, Michael S. Webster-Gardiner
  • Patent number: 11878952
    Abstract: Methods for deactivating a transition metal-based catalyst system containing a co-catalyst comprising an aluminoxane and optionally an alkylaluminum are disclosed in which the catalyst system is contacted with a C4-C18 alcohol co-catalyst deactivating agent at a molar amount of OH of the co-catalyst deactivating agent in a range from 0.5 to 1.5 times {(moles of aluminum of the aluminoxane)+(moles aluminum of the alkylaluminum)+(moles aluminum of the alkylaluminum)}. Related methods for deactivating a residual catalyst system in reactor effluent streams and related ethylene oligomerization processes also are described.
    Type: Grant
    Filed: November 14, 2022
    Date of Patent: January 23, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventor: Brooke L. Small
  • Patent number: 11873264
    Abstract: Process for producing alpha olefins comprising contacting ethylene, a zirconium based catalyst system comprising, a hydrocarbylmetal compound, a chain transfer agent, and optionally an organic reaction medium. Chain transfer agents which can be utilized include a) hydrogen, b) a compound comprising a hydrogen silicon bond, a compound having a hydrogen sulfur bond, a compound having a hydrogen phosphorus bond, or c) a transition metal compound chain transfer agent.
    Type: Grant
    Filed: November 29, 2022
    Date of Patent: January 16, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Brooke L. Small, Orson L. Sydora, Ronald D. Knudsen
  • Patent number: 11865528
    Abstract: Supported chromium catalysts with an average valence less than +6 and having a hydrocarbon-containing or halogenated hydrocarbon-containing ligand attached to at least one bonding site on the chromium are disclosed, as well as ethylene-based polymers with terminal alkane, aromatic, or halogenated hydrocarbon chain ends. Another ethylene polymer characterized by at least 2 wt. % of the polymer having a molecular weight greater than 1,000,000 g/mol and at least 1.5 wt. % of the polymer having a molecular weight less than 1000 g/mol is provided, as well as an ethylene homopolymer with at least 3.5 methyl short chain branches and less than 0.6 butyl short chain branches per 1000 total carbon atoms.
    Type: Grant
    Filed: July 17, 2023
    Date of Patent: January 9, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Masud M. Monwar, Carlos A. Cruz, Jared L. Barr, Max P. McDaniel
  • Patent number: 11865505
    Abstract: Methods for synthesizing a water-soluble titanium-silicon complex are disclosed herein. The titanium-silicon complex can be utilized to produce titanated solid oxide supports and titanated chromium supported catalysts. The titanated chromium supported catalysts subsequently can be used to polymerize olefins to produce, for example, ethylene based homopolymer and copolymers.
    Type: Grant
    Filed: January 31, 2022
    Date of Patent: January 9, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, Jeremy M. Praetorius
  • Patent number: 11866529
    Abstract: Ethylene-based polymers having a density of 0.952 to 0.968 g/cm3, a ratio of HLMI/MI from 185 to 550, an IB parameter from 1.46 to 1.80, a tan ? at 0.1 sec?1 from 1.05 to 1.75 degrees, and a slope of a plot of viscosity versus shear rate at 100 sec?1 from 0.18 to 0.28 are described, with low melt flow versions having a HLMI from 10 to 30 g/10 min and a Mw from 250,000 to 450,000 g/mol, and high melt flow versions having a HLMI from 30 to 55 g/10 min and a Mw from 200,000 to 300,000 g/mol. These polymers have the processability of chromium-based resins, but with improved stress crack resistance and topload strength for bottles and other blow molded products.
    Type: Grant
    Filed: December 6, 2022
    Date of Patent: January 9, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jeremy M. Praetorius, Yongwoo Inn, Alfred E. Brown, Jr., Brandy Rutledge-Ryal, Carlos A. Cruz, Jay M. Chaffin
  • Patent number: 11859025
    Abstract: Disclosed herein are oligomerization processes in which ethylene and a catalyst system are first combined for a suitable residence time in an activation vessel, prior to introduction into a reaction zone to oligomerize ethylene to form a desired oligomer product, such as 1-hexene and/or 1-octene. Related oligomerization reaction systems that include the activation vessel also are disclosed. In these oligomerization processes and reaction systems, the catalyst system can be fully activated as it leaves the activation vessel and enters the reaction zone, thus providing greater catalyst utilization and less catalyst waste.
    Type: Grant
    Filed: September 7, 2021
    Date of Patent: January 2, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Steven M. Bischof, James L. Hillier, Uriah J. Kilgore, Steve R. Hutchison, Bruce E. Kreischer, Orson L. Sydora
  • Patent number: 11859024
    Abstract: Ethylene-based polymers are characterized by a melt index less than 1 g/10 min, a density from 0.94 to 0.965 g/cm3, a Mw from 100,000 to 250,000 g/mol, a relaxation time from 0.5 to 3 sec, and an average number of long chain branches (LCBs) per 1,000,000 total carbon atoms in a molecular weight range of 300,000 to 900,000 g/mol that is greater than that in a molecular weight range of 1,000,000 to 2,000,000 g/mol, or an average number of LCBs per 1,000,000 total carbon atoms in a molecular weight range of 1,000,000 to 2,000,000 g/mol of less than or equal to about 5 and a maximum ratio of ?E/3? at an extensional rate of 0.1 sec?1 from 1.2 to 10. These polymers have substantially no long chain branching in the high molecular weight fraction of the polymer, but instead have significant long chain branching in a lower molecular weight fraction, such that polymer melt strength and parison stability are maintained for the fabrication of blow molded products and other articles of manufacture.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: January 2, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jeremy M. Praetorius, Alfred E. Brown, Jr., Yongwoo Inn, Youlu Yu, Qing Yang, Ashish M. Sukhadia
  • Patent number: 11859041
    Abstract: This disclosure provides new methods for the design and development of ethylene polymerization catalysts, including Group 4 metallocene catalysts such as zirconocenes, which are based on an improved ability to adjust co-monomer incorporation into the polymer. Computational analyses with and without dispersion corrections revealed that designing catalyst scaffolds which induce stabilizing non-covalent dispersion type interactions with incoming ?-olefin co-monomers can be used to modulate co-monomer selectivity into the polyethylene chain. Demonstrated herein is a lack of correlation of computed ??G‡ values against experimental ??G‡ values when the dispersion correction (D3BJ) was disabled, and B3LYP was used in the absence of Grimme's D3 dispersion and Becke-Johnson (BJ) dampening, but a correlation of computed against experimental ??G‡ with B3LYP+D3BJ, which are used to design new catalyst scaffolds.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: January 2, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Steven M. Bischof, Qing Yang, Orson L. Sydora, Graham R. Lief, Richard M Buck, Daniel H. Ess, Steven M. Maley
  • Patent number: 11850576
    Abstract: Methods for producing supported catalysts containing a transition metal and a bound zeolite base are disclosed. These methods employ a step of impregnating the bound zeolite base with the transition metal, fluorine, and high loadings of chlorine. The resultant high chlorine content supported catalysts have improved catalyst activity in aromatization reactions.
    Type: Grant
    Filed: February 21, 2022
    Date of Patent: December 26, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventor: Gabriela D. Alvez-Manoli