Patents Assigned to Chipmos Technologies Inc.
  • Patent number: 7915730
    Abstract: A packaging conductive structure for a semiconductor substrate and a method for manufacturing the structure are provided. The structure comprises an under bump metal (UBM) that overlays a pad of the semiconductor substrate. At least one auxiliary component is disposed on the UBM. Then, a bump conductive layer is disposed thereon and a bump is subsequently formed on the bump conductive layer. Thus, the bump can electrically connect to the pad of the semiconductor substrate through the UBM and the bump conductive layer and can provide better junction buffer capabilities and conductivity.
    Type: Grant
    Filed: July 2, 2007
    Date of Patent: March 29, 2011
    Assignee: Chipmos Technologies Inc.
    Inventor: Jhong Bang Chyi
  • Patent number: 7902649
    Abstract: A leadframe employed by a leadless package comprises a plurality of package units and an adhesive tape. Each of the package units has a die pad with a plurality of openings and a plurality of pins disposed in the plurality of openings. The adhesive tape is adhered to the surfaces of the plurality of package units and fixes the die pad and the plurality of pins.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: March 8, 2011
    Assignee: Chipmos Technologies Inc.
    Inventors: Chun Ying Lin, Geng Shin Shen, Yu Tang Pan, Shih Wen Chou
  • Patent number: 7888783
    Abstract: A chip package structure includes a chip-placed frame that having an adhesive layer thereon; a chip includes a plurality of pads on an active surface thereon, and is provided on the adhesive layer; a package structure is covered around the four sides of the chip-placed frame, and the height of the package structure is larger than the height of the chips; a plurality of patterned metal traces is electrically connected to the plurality of pads, another end is extended out to cover the surface of the package structure; a patterned protective layer is covered on the patterned metal traces and another end of the patterned metal traces is exposed; a plurality of patterned UBM layer is formed on the extended surface of the patterned metal traces; and a plurality of conductive elements is formed on the patterned UBM layer and is electrically connected to one end of the exposed portion of the patterned metal traces.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: February 15, 2011
    Assignees: Chipmos Technologies Inc, Chipmos Technologies (Bermuda) Ltd
    Inventors: Geng-Shin Shen, Yu-Ren Chen
  • Patent number: 7888172
    Abstract: A chip package structure is provided, includes a chip that having a plurality of pads and an adhesive layer on the back side; an encapsulated structure is covered around the four sides of the chip to expose the pads, and the through holes is formed within the encapsulated structure; a patterned first protective layer is formed on the portion surface of encapsulated structure, the portion of active surface of the chips, and the pads of the chip and the through holes are to be exposed; a metal layer is formed on the portion surface of the patterned first protective layer and formed to electrically connect the pads and to fill with the through holes; the patterned second protective layer is formed on the patterned first protective layer and the portion of metal layer, and the portion surface of metal layer is to be exposed; a patterned UBM layer is formed on the exposed surface of the metal layer and the portion surface of the patterned second protective layer; and the conductive elements is formed on the patter
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: February 15, 2011
    Assignees: Chipmos Technologies Inc, Chipmos Technologies (Bermuda) Ltd
    Inventor: Cheng-Tang Huang
  • Patent number: 7884486
    Abstract: A chip stacked package structure and applications are provided. The chip-stacked package structure includes a main substrate, a baseboard substrate, and a molding compound. The main substrate has a substrate and a first chip. The substrate has a first surface and a second surface opposite to the first surface. The first chip is disposed on the first surface and electrically connected to the substrate via first bumps. The baseboard substrate has a third surface and a fourth surface faced towards the substrate. The baseboard substrate includes a core layer having a plurality of first through holes and a first accommodation space in which the first chip is received. The second chip is disposed on the third surface of the baseboard substrate. The molding compound is used to encapsulate the main substrate, and the baseboard substrate.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: February 8, 2011
    Assignee: Chipmos Technology Inc.
    Inventors: Yu-Tang Pan, Shih-Wen Chou
  • Patent number: 7879651
    Abstract: A packaging conductive structure for a semiconductor substrate and a method for forming the structure are provided. The dielectric layer of the packaging conductive structure partially overlays the metallic layer of the semiconductor substrate and has a receiving space. The lifting layer and conductive layer are formed in the receiving space, wherein the conductive layer extends for connection to a bump. The lifting layer is partially connected to the dielectric layer. As a result, the conductive layer can be stably deposited on the edge of the dielectric layer for enhancing the reliability of the packaging conductive structure.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: February 1, 2011
    Assignee: Chipmos Technologies Inc.
    Inventor: Cheng Tang Huang
  • Patent number: 7879653
    Abstract: A leadless semiconductor package with an electroplated layer embedded in an encapsulant and its manufacturing processes are disclosed. The package primarily includes a half-etched leadframe, a chip, an encapsulant, and an electroplated layer. The half-etched leadframe has a plurality of leads and a plurality of outer pads integrally connected to the leads. The encapsulant encapsulates the chip and the leads and has a plurality of cavities reaching to the outer pads to form an electroplated layer on the outer pads and embedded in the cavities. Accordingly, under the advantages of lower cost and higher thermal dissipation, the conventional substrates and their solder masks for BGA (Ball Grid Array) or LGA (Land Grid Array) packages can be replaced. The leads encapsulated in the encapsulant have a better bonding strength and the electroplated layer embedded in the encapsulant will not be damaged during shipping, handling, or storing the semiconductor packages.
    Type: Grant
    Filed: August 10, 2008
    Date of Patent: February 1, 2011
    Assignees: Chipmos Technologies (Bermuda) Ltd., Chipmos Technologies Inc.
    Inventor: Hung-Tsun Lin
  • Patent number: 7864056
    Abstract: A depository monitoring system for use in a semiconductor factory comprises a plurality of carriers, each holding at least one semiconductor object; a depository monitoring host for monitoring a depository of each carrier; and a plurality of RFID tags and a plurality of RFID readers. It is characterized in that the RFID tags are disposed on the carriers and/or semiconductor objects, respectively, wherein each RFID tag has a tag information; the RFID readers read/write the tag information from/to the RFID tags; and the depository monitoring host comprises: a legacy database to store information related to the depository monitoring system; an RFID middleware for processing operations between the RFID readers and the RFID tags; a web interface for processing commands and query results through a B2B internet; an input/output interface for processing commands and query results through an intranet; and a depository controller for performing a sequence of processes in depository monitoring.
    Type: Grant
    Filed: April 19, 2008
    Date of Patent: January 4, 2011
    Assignee: Chipmos Technologies Inc
    Inventors: Wen-Hsiang Chiang, Tzu-Chung Fan, Shih-Ti Chi, Jui-Ching Huang, Shieng Chiang Fan, Chi-Ming Yi
  • Patent number: 7851262
    Abstract: A manufacturing process for a chip package structure is provided. First, a patterned conductive layer and a patterned solder resist layer on the patterned conductive layer are provided. A plurality of chips are bonded onto the patterned conductive layer such that the chips and the patterned solder resist layer are disposed at two opposite surfaces of the patterned conductive layer. The chips are electrically connected to the patterned conductive layer by a plurality of bonding wires, wherein the chips and the bonding wires are at the same side of the patterned conductive layer. A molding compound is formed to encapsulate the patterned conductive layer, the chips and the bonding wires. Then, the molding compound, the patterned conductive layer and the patterned solder resist layer are separated.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: December 14, 2010
    Assignees: ChipMOS Technologies Inc., ChipMOS Technologies (Bermuda) Ltd.
    Inventors: Geng-Shin Shen, Chun-Ying Lin
  • Patent number: 7851896
    Abstract: A Quad Flat Non-leaded (QFN) chip package including a patterned conductive layer, a first solder resist layer, a chip, a plurality of bonding wires and a molding compound is provided. The patterned conductive layer has a first surface and a second surface opposite to each other. The first solder resist layer is disposed on the first surface, wherein a part of the first surface is exposed by the first solder resist layer. The chip is disposed on the first solder resist layer, wherein the first solder resist layer is between the patterned conductive layer and the chip. The bonding wires are electrically connected to the chip and the patterned conductive layer exposed by the first solder resist layer. The molding compound encapsulates the pattern conductive layer, the first solder resist layer, the chip and the bonding wires.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: December 14, 2010
    Assignees: ChipMOS Technologies Inc., ChipMOS Technologies (Bermuda) Ltd.
    Inventors: Geng-Shin Shen, Chun-Ying Lin, Shih-Wen Chou
  • Patent number: 7851270
    Abstract: A manufacturing process for a chip package structure is provided. First, a patterned conductive layer having a plurality of first openings and a patterned solder resist layer on the patterned conductive layer are provided. A plurality of chips are bonded onto the patterned conductive layer such that the chips and the patterned solder resist layer are disposed at two opposite surfaces of the patterned conductive layer. The chips are electrically connected to the patterned conductive layer by a plurality of bonding wires passing through the first openings of the patterned conductive layer. At least one molding compound is formed to encapsulate the patterned conductive layer, the patterned solder resist layer, the chips and the bonding wires. Then, the molding compound, the patterned conductive layer and the patterned solder resist layer are separated.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: December 14, 2010
    Assignees: ChipMOS Technologies Inc., ChipMOS Technologies (Bermuda) Ltd.
    Inventors: Geng-Shin Shen, Chun-Ying Lin
  • Patent number: 7847414
    Abstract: A chip package structure including a first substrate, a second substrate, a plurality of bumps, a first B-staged adhesive layer and a second B-staged adhesive layer is provided. The first substrate has a plurality of first bonding pads. The second substrate has a plurality of second bonding pads, and the second substrate is disposed above the first substrate. The bumps are disposed between the first substrate and the second substrate, wherein each of the first bonding pads is respectively electrically connected to one of the second bonding pads via one of the bumps. The first B-staged adhesive layer is adhered on the first substrate. The second B-staged adhesive layer is adhered between the first B-staged adhesive layer and the second substrate, wherein the first B-staged adhesive layer and the second B-staged adhesive layer encapsulate the bumps.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: December 7, 2010
    Assignees: ChipMOS Technologies Inc., ChipMOS Technologies (Bermuda) Ltd.
    Inventors: Geng-Shin Shen, David Wei Wang
  • Patent number: 7843054
    Abstract: A chip package including a circuit substrate, a chip, a B-staged adhesive layer, a leadframe, a number of first bonding wires, a number of second bonding wires, and a number of third bonding wires. The chip is disposed on the circuit substrate. The B-staged adhesive layer is disposed on the circuit substrate. The leadframe is disposed on the circuit substrate and includes a number of leads. Portions of the leads are embedded in the B-staged adhesive layer, and an end of each of the leads is exposed by the B-staged adhesive layer. The first bonding wires are electrically connected between the chip and the circuit substrate. The second bonding wires are electrically connected between the chip and the leads. The third bonding wires are electrically connected between the leads and the circuit substrate. In addition, a manufacturing method of a chip package is also provided.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: November 30, 2010
    Assignees: ChipMOS Technologies Inc., ChipMOS Technologies (Bermuda) Ltd.
    Inventor: Shih-Wen Chou
  • Patent number: 7842550
    Abstract: A method of fabricating a quad flat non-leaded package includes first forming a patterned conductive layer on a sacrificial layer. The patterned conductive layer includes a number of lead sets. A number of chips are attached to the sacrificial layer. Each of the chips is surrounded by one of the lead sets. Each of the chips is electrically connected to one of the lead sets, and a molding compound is formed on the sacrificial layer to cover the patterned conductive layer and the chips. The molding compound and the patterned conductive layer are then cut and singulated, and the sacrificial layer is pre-cut to form a number of recesses on the sacrificial layer. After the molding compound and the patterned conductive layer are cut and singulated and the sacrificial layer is pre-cut, the sacrificial layer is removed.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: November 30, 2010
    Assignee: ChipMOS Technologies Inc.
    Inventors: Chun-Ying Lin, Geng-Shin Shen, Po-Kai Hou
  • Patent number: 7834432
    Abstract: A chip package having asymmetric molding includes a lead frame, a chip, an adhesive layer, bonding wires and a molding compound. The lead frame includes a turbulent plate and a frame body having inner lead portions and outer lead portions. The turbulent plate is bended downwards to form a concave portion. The first end of the turbulent plate is connected to the frame body, and the second end is lower than the inner lead portions. The chip is fixed under the inner lead portions through the adhesive layer. The bonding wires are connected between the chip and the inner lead portions. The molding compound encapsulates the chip, the bonding wires, and the turbulent plate. The ratio between the thickness of the molding compound over and under the concave portion is larger than 1. The thickness of the molding compound under and over the outer lead portions is not equal.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: November 16, 2010
    Assignees: ChipMOS Technologies Inc., ChipMOS Technologies (Bermuda) Ltd
    Inventors: Wu-Chang Tu, Geng-Shin Shen
  • Publication number: 20100264540
    Abstract: An IC package primarily comprises a substrate, a die-attaching layer, a chip, at least a bonding wire, and a plurality of electrical connecting components. The substrate has a top surface and a bottom surface where the top surface includes a die-attaching area for disposing the die-attaching layer. The chip is attached to the die-attaching area by the die-attaching layer and is electrically connected to the substrate by the electrical connecting components. Both ends of the bonding wire are bonded to two interconnecting fingers on the top surface of the substrate where at least a portion of the bonding wire is encapsulated in the die-attaching layer to replace some wirings or vias inside a conventional substrate. Therefore, the substrate has simple and reduced wiring layers, i.e., to reduce the substrate cost. A chip carrier of the corresponding IC package is also revealed.
    Type: Application
    Filed: June 29, 2010
    Publication date: October 21, 2010
    Applicant: CHIPMOS TECHNOLOGIES INC.
    Inventors: Hung Tsun Lin, Wu Chang Tu, Cheng Ting Wu
  • Patent number: 7816771
    Abstract: The present invention provides a stacked chip package structure with leadframe having inner leads with transfer pad, comprising: a leadframe composed of a plurality of inner leads arranged in rows facing each other, a plurality of outer leads, and a die pad, wherein the die pad is provided between the plurality of inner leads arranged in rows facing each other and vertically distant from the plurality of inner leads; an offset chip-stacked structure formed with a plurality of chips stacked together, the offset chip-stacked structure being set on the die pad and electrically connected to the plurality of inner leads arranged in rows facing each other; and an encapsulant covering the offset chip-stacked structure and the leadframe, the plurality of outer leads extending out of said encapsulant; the improvement of which being that the inner leads of the leadframe are coated with an insulating layer and a plurality of metal pads are selectively formed on the insulating layer.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: October 19, 2010
    Assignees: Chipmos Technologies Inc., Chipmos Technologies (Bermuda) Ltd.
    Inventors: Geng-Shin Shen, Wu-Chang Tu
  • Patent number: 7812422
    Abstract: A thin-film fingerprint sensor package primarily comprises a fingerprint sensor chip, a plurality of bumps, a wiring film, an encapsulant and a metal base to mechanically hold the fingerprint sensor chip. A sensing area is formed on the active surface of the fingerprint sensor chip. The bumps are disposed on the active surface. The wiring film has an opening to expose the sensing area and comprises a plurality of leads bonded to the bumps. The wiring film further has a ground lead electrically connecting the fingerprint sensor chip to the metal base. Therefore, the fingerprint sensor package can provide ESD protection during fingerprint recognition to avoid the damage of the fingerprint sensor chip.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: October 12, 2010
    Assignee: Chipmos Technologies Inc.
    Inventors: Ming-Liang Huang, Yao-Jung Lee, Ming-Hsun Li
  • Patent number: 7812432
    Abstract: A chip package including a die pad, a plurality of leads, a chip, an adhesive, and a molding compound is provided. The die pad has a top surface and a bottom surface opposite to the top surface, wherein the die pad has a blocking portion disposed on the top surface, and the leads are disposed around the die pad. The chip is disposed on the top surface of the die pad surrounded by the blocking portion and is electrically connected to the leads. A top surface of the blocking portion is higher than the top surface of the die pad surrounded by the blocking portion. The adhesive is disposed between the chip and the die pad. The molding compound encapsulates the chip, a portion of the leads, and the die pad.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: October 12, 2010
    Assignee: ChipMOS Technologies Inc.
    Inventors: Po-Kai Hou, Chi-Jin Shih
  • Publication number: 20100244278
    Abstract: A stacked multichip package comprises a first chip having a first active surface and a first rear surface, a first chip carrier having a first opening and being configured to carrier the first active surface, a plurality of first conductive leads passing through the first opening and being configured to electrically connect the first active surface and the first chip carrier, a second chip having a second active surface and a second rear surface, an adhesive layer configured to enclose the first conductive leads and to electrically couple the first chip carrier to the second rear surface, a second chip carrier having a second opening and being electrically connected to the second active surface, and a plurality of conductive leads passing through the second opening and being configured to electrically connect the second active surface and the second chip carrier.
    Type: Application
    Filed: September 10, 2009
    Publication date: September 30, 2010
    Applicants: CHIPMOS TECHNOLOGIES INC., CHIPMOS TECHNOLOGIES (BERMUDA) LTD.
    Inventor: Geng Hsin Shen