Patents Assigned to Clemson University
  • Publication number: 20090030088
    Abstract: 6-methoxy gossypol and 6,6?-dimethoxy gossypol were isolated from cottonseeds. Bioactivities of these two gossypol derivatives and gossypol were investigated regarding their antioxidant activities, DNA damage prevention ability, anti-cancer, and anti-trypanosomal activities. Both methoxy compounds had nearly equivalent bioactivities, but gossypol showed greater bioactivities than either methoxy derivative on free radical scavenging activity, reducing power, and DNA damage prevention ability. Gossypol and its methoxy derivatives inhibited growth of three cancer cell lines, i.e., SiHa (cervical cancer), MCF-7 (breast cancer) and Caco-2 (colon cancer) cells, in a dose dependent manner. These three compounds also significantly inhibited growth of trypanosome T. brucei, the cause of African Sleeping Sickness, which affects thousands in western and central Africa.
    Type: Application
    Filed: April 21, 2008
    Publication date: January 29, 2009
    Applicant: Clemson University
    Inventors: Xi Wang, James C. Morris, Feng Chen, Thomas Beckham
  • Patent number: 7463329
    Abstract: Recent theoretical investigations have predicted the existence of axially frozen modes that arise when light is incident upon an anisotropic two-dimensional photonic crystal. Such electromagnetic modes are of interest since they suggest a near-zero group velocity with extraordinary amplitudes. The present invention addresses the crystal physics associated with realizing such effects and provides for the development of materials suitable for use in the forming photonic crystals that can exhibit such effects.
    Type: Grant
    Filed: January 20, 2006
    Date of Patent: December 9, 2008
    Assignees: Clemson University, United States of America as represented by the Secretary of the Army
    Inventors: Arthur Ballato, John Ballato
  • Patent number: 7456972
    Abstract: Disclosed are optical devices including one or more carbon nanotubes that can function as plasmon waveguides. The presently disclosed devices advantageously utilize the existence of surface plasmons on carbon nanotubes through the generation and transport of surface plasmon polaritons across the nanotubes. Also disclosed are methods for tuning the devices through particular formation parameters for the nanotubes and/or selection of particular substrate materials. Systems of the present invention can provide optical data concerning a sample, for instance via construction of an NSOM image, as well as topological date concerning a sample via construction of an AFM image. In one embodiment, the disclosed systems can provide simultaneous acquisition of optical images and topological images.
    Type: Grant
    Filed: January 13, 2006
    Date of Patent: November 25, 2008
    Assignee: Clemson University
    Inventors: Pu-Chun Ke, Francesco Stellacci, Apparao M. Rao
  • Publication number: 20080213923
    Abstract: The present invention is directed to a memory device having very high storage density capability. In general, the memory device includes an array of individual memory cells which store information that is assigned a value based on the molecular contents of the memory cell. In a preferred embodiment, the molecules utilized for storing information in the memory cells may be single-strand polynucleotides, for instance single-strand oligonucleotides of between about 5 and about 20 monomer units. The present invention is also directed to methods and systems useful for writing and reading the molecular-based memory devices. In particular, the devices may be written and read via modified atomic force microscopy processes.
    Type: Application
    Filed: May 5, 2008
    Publication date: September 4, 2008
    Applicant: Clemson University
    Inventors: Thomas Boland, Thomas E. Wagner
  • Patent number: 7377684
    Abstract: A blending system incorporating a blender with an operating cavity housing a plurality of elongate rod elements extending at least partially along the length of the operating cavity such that controlled relative movement between the rod elements and a multi-constituent composition within the operating cavity causes the development of predefined structures within the multi-constituent composition. The cavity within the blender incorporates a diminished cross-section in the vicinity of its terminal end. Methods to provide controlled development of microstructures and properties are also provided.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: May 27, 2008
    Assignee: Clemson University
    Inventor: David A. Zumbrunnen
  • Publication number: 20080118695
    Abstract: A method for joining two or more substrates with a seam is provided. The seam is formed with a thermoplastic tape that is capable of forming an adhesive bond and a physical bond with a substrate. For instance, in one embodiment, the thermoplastic tape is formed from a polyurethane film. In addition, the seam can be utilized in a flat configuration or folded into a variety of different shapes, such as in a z-shaped configuration. As a result of the present invention, it has been discovered that a seam can be formed to have improved strength without substantially sacrificing the desired functional properties of the substrate materials.
    Type: Application
    Filed: October 31, 2007
    Publication date: May 22, 2008
    Applicant: Clemson University
    Inventors: Christine W. Jarvis, Robert E. Bennett, Brian Frederick
  • Patent number: 7374673
    Abstract: Polymer fibers having a novel cross-sectional geometry are used as stationary phase materials for liquid chromatography separations. Fibers of 20 to 50 micrometer diameters have surface-channel structures extending their entire lengths. Bundles of fibers having this novel cross-sectional geometry are packed in columns. Different polymer compositions permit the “chemical tuning” of the separation process. Channeled fibers composed of polystyrene and polypropylene have been used to separate mixtures of polyaromatic hydrocarbons (PAHs), Pb-containing compounds and fatty acids. Use of channeled fibers allows a wide range of liquid flow rates with very low backing pressures.
    Type: Grant
    Filed: August 13, 2002
    Date of Patent: May 20, 2008
    Assignee: Clemson University
    Inventor: R. Kenneth Marcus
  • Patent number: 7374685
    Abstract: A method for separating semiconducting single-walled carbon nanotubes from metallic single-walled carbon nanotubes is disclosed. The method utilizes separation agents that preferentially associate with semiconducting nanotubes due to the electrical nature of the nanotubes. The separation agents are those that have a planar orientation, ?-electrons available for association with the surface of the nanotubes, and also include a soluble portion of the molecule. Following preferential association of the separation agent with the semiconducting nanotubes, the agent/nanotubes complex is soluble and can be solubilized with the solution enriched in semiconducting nanotubes while the residual solid is enriched in metallic nanotubes.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: May 20, 2008
    Assignee: Clemson University
    Inventor: Ya-Ping Sun
  • Patent number: 7374616
    Abstract: Acentric, tetragonal lithium borate crystals are disclosed along with a hydrothermal method for forming such crystals. The crystals possess unique optical, non-linear optical, and other photonic properties and may be formed of sufficient size to be useful in a wide variety of photonic devices. In addition, the disclosed crystals are very hard and can be used in specialty grinding applications such as for grinding optical components for deep UV applications.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: May 20, 2008
    Assignee: Clemson University
    Inventor: Joseph W Kolis
  • Publication number: 20080113448
    Abstract: Disclosed are photoluminescent particles. The particles include a core nano-sized particle of carbon and a passivation agent bound to the surface of the nanoparticle. The passivation agent can be, for instance, a polymeric material. The passivation agent can also be derivatized for particular applications. For example, the photoluminescent carbon nanoparticles can be derivatized to recognize and bind to a target material, for instance a biologically active material, a pollutant, or a surface receptor on a tissue or cell surface, such as in a tagging or staining protocol.
    Type: Application
    Filed: October 27, 2006
    Publication date: May 15, 2008
    Applicant: CLEMSON UNIVERSITY
    Inventor: Ya-Ping Sun
  • Patent number: 7349731
    Abstract: The invention provides a means to produce reconstructed refractive index spatial maps that reveal and allow visual separation of normal soft tissue and certain types of tumors. Detector fiber optic bundles positioned on the surface of a soft tissue organ receive and transmit scattered light data, from light in the near-infrared portion of the spectrum delivered to the surface of the organ by separate fiber optic bundles to a computer. Based on an established grid and certain assumed values, the data are analyzed by means of a complex algorithm to produce calculated refractive index values. Through iteration, the values are recalculated to minimize the difference between the observed scattering and calculated values to yield a stable map indicating spatial variation in refractive index and such variation in the form of displayed images indicates the presence of tumors in normal soft tissue.
    Type: Grant
    Filed: May 29, 2003
    Date of Patent: March 25, 2008
    Assignee: Clemson University Research Foundation
    Inventor: Huabei Jiang
  • Patent number: 7347003
    Abstract: A device to measure minute displacement in rocks, including anchor deployment means, anchor registration means, and frame release means. Further including anchor units comprising a fixed anchor point, a reversible anchor actuator and a deployable anchor face capable of being deployed with a force of up to 2000 lbs.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: March 25, 2008
    Assignee: Clemson University
    Inventors: Lawrence Corlies Murdoch, Todd Alan Schweisinger, Cecil O. Huey, Jr.
  • Patent number: 7265174
    Abstract: The disclosure provides compositions prepared by combining nanomaterials with a halide-containing polymer, thereby forming a combined polymer matrix having dispersed nanomaterials within the matrix. The nanomaterials may be carbon-based nanotubes, in some applications. A halide-containing monomer is combined with nanotubes, and then polymerized in some compositions. In other applications, a halide-containing polymer is solution processed with nanotubes to form useful compositions in the invention. Also disclosed are probes for near field detection of radiation.
    Type: Grant
    Filed: March 21, 2002
    Date of Patent: September 4, 2007
    Assignee: Clemson University
    Inventors: David Carroll, John Ballato, Stephen Foulger, Richard Czerw, Dennis Smith, Hiren Shah, Earl Wagener
  • Patent number: 7261813
    Abstract: Monolithic cartridges including a plurality of nominally aligned polymer fibers can be used as stationary phase materials for liquid chromatography separations. Bundles of fibers are packed together so as to form capillary channels between the fibers. Different polymer compositions permit the “chemical tuning” of the separation process. The fibers can be physically or chemically bonded at spaced locations throughout the cartridge or can be packed together under pressure by use of an encasing wrap to form the capillary channels. Use of fibers allows a wide range of liquid flow rates with very low backpressures. Applications in HPLC, cap-LC, prep-scale separations, analytical separations, waste remediation/immobilization, extraction of selected organic molecules/ions from solution, purification of liquid streams (process waste, drinking water, pure solvents), selective extraction of cell matter and bacteria from growth media, and immobilization of cell matter and bacteria are envisioned.
    Type: Grant
    Filed: August 10, 2004
    Date of Patent: August 28, 2007
    Assignee: Clemson University
    Inventors: Richard Kenneth Marcus, Rayman Dupre Stanelle
  • Patent number: 7261938
    Abstract: The present invention is directed to a practically universal surface modification process and the materials thereby obtained. In general, the process includes initial epoxy modification of a substrate surface by attachment of an epoxy-containing polymer to the surface. Following attachment of the polymer, still-existing epoxy groups on the polymer may then cross-link the polymer to form a unified anchoring layer on the surface. Other epoxy groups in the anchoring layer, not utilized in forming the layer may be used to graft surface modifying materials to the surface. For instance, macromolecules, biomolecules, polymers, and polymerization initiators may be grafted to the surface via the anchoring layer.
    Type: Grant
    Filed: February 1, 2006
    Date of Patent: August 28, 2007
    Assignee: Clemson University
    Inventors: Igor A. Luzinov, Killugudi L. Swaminatha Iyer, Viktor Z. Klep, Bogdan V. Zdyrko
  • Patent number: 7258790
    Abstract: A controlled eutrophication system and process are disclosed. The system includes the combination of a partitioned aquaculture system in conjunction with an anaerobic digester. Wastewater containing pollutants, such as nitrogen and phosphorus, are fed to the partitioned aquaculture system. Algae within the system converts the pollutants into algal biomass. Fish populations, in turn, control the algal populations. The fish populations may then be periodically harvested for human or animal consumption. A polishing chamber is contained in the system in which aquatic organisms remove substantial amounts of the algae from batch fed additions of water. The water is then discharged to an external water source containing virtually no pollutants. In one embodiment, the biomass excreted by the aquatic organisms in the system are collected and fed to a digester.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: August 21, 2007
    Assignee: Clemson University
    Inventors: David E. Brune, John A. Collier, Thomas E. Schwedler, A. G. Eversole
  • Patent number: 7252834
    Abstract: A method and product are provided for the treatment of connective tissue weakened due to destruction of tissue architecture, and in particular due to elastin degradation. The treatment agents employ certain unique properties of phenolic compounds to develop a protocol for reducing elastin degradation, such as that occurring during aneurysm formation in vasculature. According to the invention, elastin can be stabilized in vivo and destruction of connective tissue, such as that leading to life-threatening aneurysms in vasculature, can be tempered or halted all together. The treatment agents can be delivered or administered acutely or chronically according to various delivery methods, including sustained release methods incorporating perivascular or endovascular patches, use of microsphere carriers, hydrogels, or osmotic pumps.
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: August 7, 2007
    Assignee: Clemson University Research Foundation (CURF)
    Inventors: Narendra R. Vyavahare, Jason C. Isenburg, Dan T. Simionescu
  • Patent number: 7241479
    Abstract: The present invention is generally directed to a novel process for the production of nanowires and nanobelts and the novel nanostructures which can be produced according to the disclosed processes. The process can be carried out at ambient pressure and includes locating a metal in a reaction chamber, heating the chamber to a temperature at which the metal becomes molten, and flowing a vapor-phase reactant through the chamber. The vapor-phase reactant and the molten metal can react through a thermal CVD process, and nanostructures can form on the surface of the molten metal. Dimensions of the nanostructures can be controlled by reaction temperature.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: July 10, 2007
    Assignee: Clemson University
    Inventors: Apparao M. Rao, Rahul Rao
  • Patent number: 7211234
    Abstract: The present invention is directed to lanthanide vanadate crystals having the formula LnVO4, wherein Ln is selected from La, Nd, Ce, Pr, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, and combinations of at least two thereof, made by a hydrothermal method for a wide variety of end-use applications. The present method requires reacting a source of Ln3+ ions and a source of VO43+ ions, wherein Ln is selected from the group consisting of La, Nd, Ce, Pr, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y and combinations of at least two thereof, in an aqueous solution at a temperature of from about 350° C. to about 600° C. and at a pressure of from about 8 kpsi to about 40 kpsi, the aqueous solution comprising hydroxide ions at a concentration of from about 0.01 to about 5 molarity. Specifically, when made by the present hydrothermal method, single crystals of sufficient size for use in a variety of optical applications are readily formed.
    Type: Grant
    Filed: January 5, 2005
    Date of Patent: May 1, 2007
    Assignee: Clemson University
    Inventors: Joseph W Kolis, Steven J Syracuse
  • Patent number: 7206114
    Abstract: The present invention is directed to optical devices. More specifically, the disclosed devices include a film defining a periodic array of surface elements so as to give rise to surface plasmon polaritons. The film also includes at least a single aperture having a diameter less than the wavelength of light. In one embodiment, the surface elements can be an array of anisotropic apertures and the films can act as a polarizer. The disclosed devices can also include a material having a variable refractive index substantially adjacent to the metal film. For example, the refractive index of the adjacent material can vary according to some characteristic of the light incident to the device, for instance, the intensity or the angle of incidence of the light. In this embodiment, resonant coupling of incident light with the SPP, and hence transmittivity of the device, can depend upon the nature of incident light.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: April 17, 2007
    Assignee: Clemson University
    Inventors: John Ballato, David L. Carroll, Jeffrey R. Dimaio