Patents Assigned to Clemson University
  • Patent number: 11762370
    Abstract: This system is directed to a computerized system for development of textiles with modified physical properties through stitching and can include a set of non-transitory computer readable instructions configured for: receiving a design pattern representing desired physical properties of a textile having a higher stiffness area and a lower stiffness area; developing a contiguous stitching pattern constrained by a pattern perimeter boundary and having a continuous stitching path, developing a first stiffness area within the contiguous stitching pattern having a first area of density, developing a second stiffness area within the contiguous stitching pattern having a second area of density wherein the first area of density has more stitch density than the second area of density, and transmitting the contiguous stitching pattern to an embroidery machine configured to provide a textile having the contiguous stitching pattern incorporating into the textile.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: September 19, 2023
    Assignee: Clemson University Research Foundation
    Inventors: Victor B. Zordan, Ella A Moore, Michael Porter, Ioannis Karamouzas
  • Patent number: 11745399
    Abstract: This system and method provide for manufacturing a multi-material hybrid structure comprising a single- or multi-layer sheet or tube, which are made of metals, fabrics, polymer and their combinations, and at least one layer or body made of formed resin. The methods include a simultaneous forming-injection process that followed with an additional sequence to initiate the forming process along with curing and/or solidification and/or bonding processes. The additional sequence provides a pressure drop inside the cavity using tool movement and or additional deformation of one/or several layers of the sheet using any fluid pressure, suction and/or electromagnetic force. The injection process can be used for any kind of synthetic or bio-based resin with or without fiber reinforcement. It is also integrated with supercritical assisted technology.
    Type: Grant
    Filed: October 7, 2020
    Date of Patent: September 5, 2023
    Assignee: Clemson University
    Inventors: Srikanth Pilla, Saeed Farahani
  • Patent number: 11718766
    Abstract: The present invention provides alkyl substituted polysaccharide compositions and methods of repairing substrates involving use of the alkyl substituted polysaccharide compositions.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: August 8, 2023
    Assignee: Clemson University
    Inventors: Marek W. Urban, Ying Yang
  • Patent number: 11684307
    Abstract: Implantable sensors for determining bone health that can be utilized in conjunction with orthopedic implants are described. The sensors can include passive strain gauges or passive chemical sensors that can be read by radiographic imaging techniques. Sensors can be affixed to implantable support devices so as to non-invasively monitor the effect of load on the implant; for instance, to provide a quantitative assessment of when a fracture is sufficiently healed to allow safe weight-bearing upon the limb. Alternatively, sensors can monitor the health of a local implant area; for instance, to monitor the implant area of early stage infection or healing of a fusion procedure.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: June 27, 2023
    Assignee: Clemson University Research Foundation
    Inventors: Jeffrey Anker, Caleb Behrend, John Desjardins
  • Publication number: 20230152792
    Abstract: A system of digitally representing equipment failure comprising: a testing assembly for testing a component of a manufacturing equipment wherein the component includes a defect in a critical area included in the component; a sensor in communications with the testing assembly for sensing a failure state of the component, a set of computer readable instructions adapted for: receiving a critical failure mode associated with the component, receiving a testing dataset from the sensor representing testing results produced by the testing assembly wherein the testing dataset includes initial data representing an undamaged component and a failure dataset representing a failed component, isolating a set of failure data representing a testing status of the component from initial testing to failure of the component determined by the critical failure mode, creating a usable lifetime model of the component according to the set of failure data.
    Type: Application
    Filed: November 16, 2022
    Publication date: May 18, 2023
    Applicant: Clemson University
    Inventors: Laine Mears, Ethan Wescoat
  • Patent number: 11646872
    Abstract: The system can be for the management of access authorization using an immutable ledger comprising and can include a server having a computer readable medium in communications with an immutable ledger. A set of computer readable instructions can be included in the server and can be configured for: receiving a set of data, encrypting the set of data with a data-encryption-key and storing the encrypted data on the immutable ledger, creating a key tree having a node associated with a user, creating a key-encryption-key associated with the node and the user, and, distributing the key-encryption-key to the user wherein the key-encryption-key is configured to decrypt the data-encryption-key thereby providing access to the data for the user.
    Type: Grant
    Filed: April 20, 2021
    Date of Patent: May 9, 2023
    Assignees: Clemson University, University of Tennessee Research Foundation
    Inventors: Richard R. Brooks, Lu Yu, Anthony Skjellum
  • Publication number: 20230126832
    Abstract: A system for including a computer readable medium; data pipes a first emission source, second emission source, and remediation source, a remediation data pipe in communication with the server and a remediation source; a sensor; a facilities system in communications with a server; and, a set of computer readable instructions stored on the computer readable medium and configured to: receive first and second emission information, and remediation information, calculate an emission value, generate a facility action information according to a comparison of the enterprise emission value and a target emission value, and, transmit the facility action information to the facilities system wherein the facilities is configured to implement or reject an action represented by the facility action information.
    Type: Application
    Filed: October 24, 2022
    Publication date: April 27, 2023
    Applicant: Clemson University
    Inventors: David Lawrence White, Snowil Lopes, Tim R. Howard
  • Patent number: 11633355
    Abstract: Provided herein are multi-functional particles. The particles may include poly(lactide-co-glycolide)-g-polyethylenimine (PLGA-g-PEI (PgP)), at least one targeting moiety, at least one therapeutic agent, and/or at least one nucleic acid. Also provided herein are methods of using the multi-functional particles.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: April 25, 2023
    Assignee: Clemson University Research Foundation
    Inventor: Jeoung Soo Lee
  • Patent number: 11630007
    Abstract: Pressure/strain piezoresistive are described that include a poled piezoelectric polymer such as PVDF or P(VDF-TrFE) and graphene. The poled piezoelectric polymer and the graphene are electronically coupled to form a heterojunction and provide an ultra-high sensitivity pressure/strain sensor. The sensors can be carried on a flexible supporting substrate such as PDMS or PET to exhibit high flexibility. The materials of formation can be biocompatible and the sensors can be wearable or implantable.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: April 18, 2023
    Assignee: Clemson University
    Inventors: Soaram Kim, Goutam Koley, Yongchang Dong, Apparao M. Rao
  • Patent number: 11596876
    Abstract: A relatively fast, inexpensive, and non-destructive method for separation and isolation of biologically active nanoparticles is described. Methods include the use of solid phase separation medis such as channeled fibers in a hydrophobic interaction chromatography (HIC) protocol to isolate biologically active nanoparticles from other components of a mixture. Biologically active nanoparticles can include natural nanoparticles (e.g., exosomes, lysosomes, virus particles) as well as synthetic nanoparticles (liposomes, genetically modified virus particles, etc.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: March 7, 2023
    Assignee: Clemson University Research Foundation
    Inventors: R. Kenneth Marcus, Terri F. Bruce, Lei Wang, Sisi Huang, Tyler Y. Slonecki, Rhonda Reigers Powell
  • Patent number: 11536832
    Abstract: This system is directed to a batteryless, self-powered sensor comprising: a microprocessor; a first and second solar panel in electronic communications with the microprocessor; a transceiver in communication with the microprocessor; and a set of computer readable instructions included in the microprocessor adapted for creating motion data including a direction and a speed of movement of object within a first sensing area and a second sensing area, transmitted the motion data to a remote location if sufficient power is provided by the first solar panel to actuate the transceiver and a number of data points in the motion data exceeds a pre-determined number of minimal data points, associating a reduction in power delivered from the first solar panel to the microprocessor with movement and associating an increase in power delivered from the first solar panel to the microprocessor with movement.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: December 27, 2022
    Assignee: Clemson University
    Inventors: Jacob Sorber, Josiah D. Hester, Harsh Desai, Nicole Tobias, Arwa Alsubhi, Taylor Antonio Hardin, Calvin Moody
  • Publication number: 20220390810
    Abstract: This system and method of for providing a tunable orbital angular momentum system for providing higher order Bessel beams comprising: an acousto-optical deflector configured to receive an input beam, deflect a first portion of the input beam a first deflection angle relative to an axis of propagation and along an optical axis and deflect a second portion of the input beam a second deflection angle relative to the optical axis; a line generator disposed along the optical angle for receiving the first portion and the second portion of the input beam and provide an elliptical Gaussian mean; a log-polar optics assembly disposed along the optical angle for receiving the elliptical Gaussian beam and wrapping the elliptical Gaussian beam with an asymmetric ring; and, a Fourier lens configured to receive the wrapped elliptical Gaussian beam.
    Type: Application
    Filed: June 13, 2022
    Publication date: December 8, 2022
    Applicant: Clemson University
    Inventors: Eric G. Johnson, Jerome Keith Miller, Richard Watkins, Kaitlyn Morgan, Wenzhe Li, Yuan Li
  • Patent number: 11510906
    Abstract: A drug product and method for treating a parasitic disease in a host is described. The drug product comprises: a carrier matrix; and a drug substance having the formula: wherein: R1 is selected from the group consisting of H, aliphatic of 1 to 100 carbons and arene comprising up to 100 carbons; each R3 is independently selected from the group consisting of H, aliphatic of 1 to 100 carbons and arene comprising up to 100 carbons; Y represents those elements necessary to form a 5 or 6 membered ring; X is selected from the group consisting of B, O, N, S, Se and P; and n is 1-4 as necessary to complete the valence of X.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: November 29, 2022
    Assignee: Clemson University
    Inventors: Daniel C. Whitehead, James C. Morris, Chandima J. Narangoda
  • Patent number: 11501472
    Abstract: This system is designed to color correct a targeted color or colors in a video stream comprising: a computer device having a computer readable medium; and, a set of computer readable instructions embodied on the computer readable medium that are configured to: receive a dataset that includes one or more pairs of video frames where a first frame of the pair of an incorrect color frame and the second frame of the pair is a color correct frame, using a machine learning module to create a mask according to the dataset, receiving an image, correcting the image, and, transmitting the corrected image to a display.
    Type: Grant
    Filed: September 27, 2020
    Date of Patent: November 15, 2022
    Assignee: Clemson University Research Foundation
    Inventors: Erica B. Walker, D. Hudson Smith
  • Patent number: 11476634
    Abstract: A rare earth-doped optical fiber comprises a fluorosilicate core surrounded by a silica cladding, where the fluorosilicate core comprises an alkaline-earth fluoro-alumino-silicate glass, such as a strontium fluoro-alumino-silicate glass. The rare earth-doped optical fiber may be useful as a high-power fiber laser and/or fiber amplifier. A method of making a rare earth-doped optical fiber comprises: inserting a powder mixture comprising YbF3, SrF2, and Al2O3 into a silica tube; after inserting the powder mixture, heating the silica tube to a temperature of at least about 2000° C., some or all of the powder mixture undergoing melting; drawing the silica tube to obtain a reduced-diameter fiber; and cooling the reduced-diameter fiber. Thus, a rare earth-doped optical fiber comprising a fluorosilicate core surrounded by a silica cladding is formed.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: October 18, 2022
    Assignees: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS, CLEMSON UNIVERSITY
    Inventors: Peter Dragic, John Ballato, Maxime Cavillon
  • Patent number: 11452294
    Abstract: Disclosed are methods for selectively controlling or modifying the growth of Poa annua in a turfgrass using a composition comprising an herbicidally-effective amount tebuconazole, or a salt thereof.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: September 27, 2022
    Assignees: North Carolina State University, Clemson University Research Foundation
    Inventors: Fred H. Yelverton, Lambert McCarty
  • Patent number: 11433353
    Abstract: Methods and systems for the separation of hydrogen isotopes from one another are described. Methods include utilization of a hydrogen isotope selective separation membrane that includes a hydrogen isotope selective layer (e.g., graphene) and a hydrogen ion conductive supporting layer. An electronic driving force encourages passage of isotopes selectively across the membrane at an elevated separation temperature to enrich the product in a selected hydrogen isotope.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: September 6, 2022
    Assignees: Savannah River Nuclear Solutions, LLC, Clemson University Research Foundation, Georgia Tech Research Corporation
    Inventors: Dale A. Hitchcock, Steven M. Serkiz, Timothy M. Krentz, Josef A. Velten, Kyle S. Brinkman, Eric M. Vogel, Katherine T. Young
  • Patent number: 11425863
    Abstract: Yield monitoring systems for round baling machines and methods that can provide weight estimations for round bales at the time of formation are described. Balers can include those that incorporate hydraulically actuated bale kicking or pushing assemblies as well as those that incorporate spring-loaded off ramps. Farm implements including baling machines and cotton module builders are encompassed. The system includes a sensor that can ascertain a physical parameter associated with ejection of a round bale from the farm implement. Physical parameters as may be ascertained can include pressures, velocities, accelerations, etc. associated with bale ejection.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: August 30, 2022
    Assignee: Clemson University Research Foundation
    Inventors: Kendall R. Kirk, H. Guy Ramsey, IV, Perry J. Loftis
  • Patent number: 11415523
    Abstract: A system for monitoring an analyte concentration in liquid is provided. The system includes a coupon comprising an absorbent body with a window through the absorbent body wherein the liquid is maintained in said window by capillary action and surface tension. A reactant is in the absorbent body wherein the reactant is capable of diffusing into the window to react with an analyte in the liquid, or the reactant is able to react with the analyte within the coupon itself, with color-indicating by-products of the reaction diffusing into the window, wherein the analyte is present in an analyte concentration, to form a reactant with a color wherein the color has an intensity which correlates to the analyte concentration. A light source is provided which is capable of passing light into the window wherein the light is attenuated by the color proportional to the analyte concentration to form attenuated light. A detector is provided which is capable measuring an intensity of the attenuated light.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: August 16, 2022
    Assignee: Clemson University Research Foundation
    Inventors: Robert A. Latour, George Chumanov, Alexandra Czynski
  • Patent number: 11374503
    Abstract: A power transmission system can include a transformer and compensator circuit(s), each coupled between a node of the transformer and a ground connection. The compensator circuit(s) can each be configured to counteract a DC signal component of an AC signal at the transformer. The compensator circuit(s) can include a converter circuit having an AC side and a DC side and configured to convert a DC voltage on the DC side to an AC signal at the AC side. The compensator circuit(s) can include a DC link coupled to the DC side of the converter circuit. The compensator circuit(s) can include a controller configured to measure a DC signal component between the load and the ground; to determine, based at least in part on the DC signal component, a compensating signal configured to counteract the DC signal component; and to inject, by the converter circuit, the compensating signal to counteract the DC signal component.
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: June 28, 2022
    Assignees: Savannah River Nuclear Solutions, LLC, Clemson University
    Inventors: Klaehn W. Burkes, Vincent J. Ceyssens, Johan H. R. Enslin, Moazzam Nazir