Patents Assigned to Clemson University
  • Patent number: 10465033
    Abstract: Single-step synthesis processes for production of ultrahigh molecular weight block copolymers are described. The ultrahigh molecular weight copolymers can have a molecular weight of about 106 or greater and can be formed within a few hours in a surfactant-free environment. The formation process is controlled by initiator-starvation conditions in a sequential polymerization of monomers exhibiting different solubility in the solvent.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: November 5, 2019
    Assignee: Clemson University Research Foundation
    Inventor: Marek W. Urban
  • Publication number: 20190313593
    Abstract: The invention provides methods of inhibiting the growth of a shoot apical meristem of a cucurbit rootstock plant, comprising contacting a shoot apical meristem of the cucurbit rootstock plant with an effective amount of a composition comprising one or more fatty alcohols, thereby inhibiting the growth of the shoot apical meristem of the cucurbit rootstock plant. The present invention further provides methods for preparing and producing cucurbit rootstock plants for grafting and methods for grafting. Additionally provided are cucurbit rootstock plants and plant parts and grafted cucurbit plants produced by the methods of the invention.
    Type: Application
    Filed: February 4, 2019
    Publication date: October 17, 2019
    Applicants: Syngenta Participations AG, Clemson University
    Inventors: Richard Hassell, James Brusca, Xingping Zhang, Shawna Daley
  • Patent number: 10441550
    Abstract: The present invention is a bioactive, nanofibrous material construct which is manufactured using a unique electrospinning perfusion methodology. One embodiment provides a nanofibrous biocomposite material formed as a discrete textile fabric from a prepared liquid admixture of (i) a non-biodegradable durable synthetic polymer; (ii) a biologically active agent; and (iii) a liquid organic carrier. These biologically-active agents are chemical compounds which retain their recognized biological activity both before and after becoming non-permanently bound to the formed textile material; and will become subsequently released in-situ as discrete freely mobile agents front the fabric upon uptake of water from the ambient environment.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: October 15, 2019
    Assignees: BIOSURFACES, INC., RHODE ISLAND BOARD OF EDUCATION, CLEMSON UNIVERSITY
    Inventors: Matthew D. Phaneuf, Philip J. Brown, Martin J. Bide
  • Patent number: 10441321
    Abstract: Rib hook devices, systems, and methods of assembling and using the devices and systems are disclosed. The rib hook device includes a body with a first end and a second end and a rod attachment member coupled to and extending away from the second end of the body. The rib hook system includes at least one rib hook device, a first rod for engaging the at least one rib hook device, and at least one fastener for securing the first rod to the at least one rib hook device. Methods for assembling and using the rib hook devices and systems are also disclosed.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: October 15, 2019
    Assignees: CLEMSON UNIVERSITY RESEARCH FOUNDATION, MUSC FOUNDATION FOR RESEARCH DEVELOPMENT
    Inventors: Gregory J. Wright, Hai Yao, Richard H. Gross
  • Patent number: 10402709
    Abstract: Devices, systems, and methods provide direct digitization and encoding of a parameter to be sensed or measured. Digitized readings are encoded into binary bits, which are acquired and handled by digital devices. An all-digital sensing device can be implemented in passive, active, or semi-passive forms, and in some embodiments includes a transducer, digitizer/encoder, reader, and transmitter. A transducer converts the parameter to be measured into a digitizable quantity, based on such as mechanical deformation, dielectric properties, or electromagnetic wave or acoustic-wave properties. A piezoelectric material transducer converts stress/pressure into resistance or voltage. A fiber-optic interferometer transducer converts pressure/temperature/PH into irradiation amplitude or wavelength shift in spectrum domain. Encoded binary or quasi-binary states are identified by a reader. Binary states have resolutions arranged according to a 2N format.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: September 3, 2019
    Assignee: Clemson University
    Inventors: Hai Xiao, Wenge Zhu
  • Patent number: 10389104
    Abstract: An improved DC circuit breaker is provided for automatically detecting and isolating a fault between a source and a ground. The DC circuit breaker comprises at least one switch, in electrical series with a first inductor between the source and a load, and a second inductor magnetically coupled to the first inductor wherein a first side of the second inductor is electrically connected to the load and a second side of the second inductor is grounded through a capacitor.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: August 20, 2019
    Assignee: CLEMSON UNIVERSITY
    Inventor: Keith A. Corzine
  • Patent number: 10328032
    Abstract: The present invention is a bioactive, nanofibrous material construct which is manufactured using a unique electrospinning perfusion methodology. One embodiment provides a nanofibrous biocomposite material formed as a discrete textile fabric from a prepared liquid admixture of (i) a non-biodegradable durable synthetic polymer; (ii) a biologically active agent; and (iii) a liquid organic carrier. These biologically-active agents are chemical compounds which retain their recognized biological activity both before and after becoming non-permanently bound to the formed textile material; and will become subsequently released in-situ as discrete freely mobile agents from the fabric upon uptake of water from the ambient environment.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: June 25, 2019
    Assignees: BIOSURFACES, INC., RHODE ISLAND BOARD OF EDUCATION, CLEMSON UNIVERSITY
    Inventors: Matthew D. Phaneuf, Philip J. Brown, Martin J. Bide
  • Publication number: 20190190251
    Abstract: An improved DC circuit breaker is provided for automatically detecting and isolating a fault between a source and a ground. The DC circuit breaker comprises at least one switch, in electrical series with a first inductor between the source and a load, and a second inductor magnetically coupled to the first inductor wherein a first side of the second inductor is electrically connected to the load and a second side of the second inductor is grounded through a capacitor.
    Type: Application
    Filed: February 13, 2019
    Publication date: June 20, 2019
    Applicant: Clemson University Research Foundation (CURF)
    Inventor: Keith A. Corzine
  • Patent number: 10293082
    Abstract: Systems and methods that establish a pressure differential across a tissue wall to encourage complete decellularization of the wall are described. The methods can be utilized for decellularization of blood vessel tissue including heart valves and surrounding tissues. The methods and systems can essentially completely decellularize the treated tissue segments. Systems can be utilized to decellularize one or multiple tissue segments at a single time.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: May 21, 2019
    Assignee: Clemson University Research Foundation
    Inventors: Leslie Sierad, Eliza Laine Shaw, George Fercana, Dan Simionescu
  • Patent number: 10281405
    Abstract: Described is an elemental analysis system and methods for use thereof that can be utilized in examination of samples in their native state. The systems utilize a liquid sampling—atmospheric pressure glow discharge (LS-APGD) device for ambient desorption sampling and excitation of a solid sample in combination with optical emission detection. This approach can find application across a broad spectrum of analytical challenges including metals, soils, and volume-limited samples.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: May 7, 2019
    Assignee: Clemson University Research Foundation
    Inventors: Richard Kenneth Marcus, Htoo Wai Paing, Xinyan Zhang
  • Patent number: 10280194
    Abstract: Novel synthesized amino acids of glutamine and lysine that are directly PEGylated with small, monodisperse PEGs, and a novel process for creating novel amino acid monomers using PEGylation. These amino acids are readily incorporated into peptides for a range of different applications.
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: May 7, 2019
    Assignee: Clemson University
    Inventors: Modi Wetzler, Paris Lamont Hamilton
  • Patent number: 10283759
    Abstract: A silicon-based anode comprising silicon, a carbon coating that coats the surface of the silicon, a polyvinyl acid that binds to at least a portion of the silicon, and vinylene carbonate that seals the interface between the silicon and the polyvinyl acid. Because of its properties, polyvinyl acid binders offer improved anode stability, tunable properties, and many other attractive attributes for silicon-based anodes, which enable the anode to withstand silicon cycles of expansion and contraction during charging and discharging.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: May 7, 2019
    Assignees: Clemson University Research Foundation, Georgia Tech Research Corporation
    Inventors: Gleb Nikolayevich Yushin, Igor Luzinov, Bogdan Zdyrko, Alexandre Magasinski
  • Patent number: 10269525
    Abstract: A liquid sampling, atmospheric pressure, glow discharge (LS-APGD) device as well as systems that incorporate the device and methods for using the device and systems are described. The LS-APGD includes a hollow capillary for delivering an electrolyte solution to a glow discharge space. The device also includes a counter electrode in the form of a second hollow capillary that can deliver the analyte into the glow discharge space. A voltage across the electrolyte solution and the counter electrode creates the microplasma within the glow discharge space that interacts with the analyte to move it to a higher energy state (vaporization, excitation, and/or ionization of the analyte).
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: April 23, 2019
    Assignees: Clemson University Research Foundation, Battelle Memorial Institute on behalf of Pacific Northwest National Laboratory, The Regents of the University of California—Lawrence Berkeley National Laboratory
    Inventors: R. Kenneth Marcus, Charles Derrick Quarles, Jr., Richard E. Russo, David W. Koppenaal, Charles J. Barinaga, Anthony J. Carado
  • Publication number: 20190110389
    Abstract: Disclosed are methods and systems for determining the amount of material contained in a windrow. In particular embodiments, the methods and systems are applicable to agricultural applications, and in particular to hay yield monitoring. Systems include a remote sensing technology to determine windrow height. Remote sensing methods can include ultrasonic sensors, optical sensors, and the like. Systems can provide real time yield data.
    Type: Application
    Filed: December 13, 2018
    Publication date: April 18, 2019
    Applicant: Clemson University Research Foundation
    Inventors: Kendall R. Kirk, H. Guy Ramsey, IV
  • Patent number: 10244818
    Abstract: Orthotics and methods for forming orthotics are described. The orthotics can be designed with a patient-specific design and can include variation in hardness across the orthotic so as to satisfy clinical need. An orthotic can be a custom-designed orthotic formed according to an additive manufacturing process such as a 3-D printing methodology. Through utilization of on-site formation methods such as 3-D printing, an orthotic can be designed, formed and fit at the point of care in a much shorter time period than traditional orthotics. The orthotics can include a layer that includes a plurality of cells across the layer. The layer can exhibit variable hardness across the layer through variation in cell void volume and optionally material of formation across the layer.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: April 2, 2019
    Assignees: Clemson University Research Foundation, Ability Prosthetics & Orthotics, Inc.
    Inventors: John DesJardins, Scott Edward Stanley, Breanne Przestrzelski, Timothy C. Pruett, Steve L. Hoeffner, Brian Daryl Kaluf
  • Patent number: 10240012
    Abstract: Disclosed are thermoset/thermoplastic composites that include a thermoset component directly or indirectly bonded to a thermoplastic component via a crosslinked binding layer between the two. The crosslinked binding layer is bonded to the thermoplastic component via epoxy linkages and is either directly or indirectly bonded to the thermoset component via epoxy linkages. The composite can be a laminate and can provide a route for addition of a thermoplastic implant to a thermoset structure.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: March 26, 2019
    Assignees: University of South Carolina, Clemson University
    Inventors: Michael Van Tooren, Igor Luzinov
  • Patent number: 10232050
    Abstract: Provided herein are multi-functional particles. The particles may include poly(lactide-co-glycolide)-g-polyethylenimine (PLGA-g-PEI (PgP)), at least one targeting moiety, at least one therapeutic agent, and/or at least one nucleic acid. Also provided herein are methods of using the multi-functional particles.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: March 19, 2019
    Assignee: Clemson University
    Inventor: Jeoung Soo Lee
  • Patent number: 10188025
    Abstract: Disclosed are methods and systems for determining the amount of material contained in a windrow. In particular embodiments, the methods and systems are applicable to agricultural applications, and in particular to hay yield monitoring. Systems include a remote sensing technology to determine windrow height. Remote sensing methods can include ultrasonic sensors, optical sensors, and the like. Systems can provide real time yield data.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: January 29, 2019
    Assignee: Clemson University Research Foundation
    Inventors: Kendall R. Kirk, H. Guy Ramsey, IV
  • Patent number: 10156067
    Abstract: A building framing system includes a floor portion or floor framing system, a wall portion or wall framing system, and a roof portion or roof framing system. Each framing system comprises a plurality of components. Each component defines a connection geometry for connecting one component to another. The connection geometries are such that mechanical or other similar fasteners are not required to hold the various components together; rather, the connection geometries connect the components and hold them in place with respect to one another. Further, the framing systems utilize pre-cut components such that the components of each framing system arrive onsite cut to a needed length and width and with the appropriate connection geometry.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: December 18, 2018
    Assignee: Clemson University Research Foundation
    Inventors: Dustin Graham Albright, Vincent Yves-Marie Blouin, Daniel Nevin Harding, David Aaron Pastre, Ulrike Ann-Sophie Heine, Ufuk Ersoy, Ty Monks, Anthony Wohlers, Michael Stoner, Eric Balogh, Tyler Silvers, Clair Dias, Alison Martin, Jon Pennington, Jeff Hammer, Will Hinkley, Justin Hamrick, Alexandra Latham, Neely Leslie, Rodney Daniel Taylor, II, David Herrero, Rebecca Mercer Wilson, Russell Buchanan, Amelia Brackmann, Paul Mosher, Allyson Beck, Alex Libengood
  • Patent number: 10132965
    Abstract: A refractive index device and method of making it include obtaining a glass structure comprising a plurality of nucleation sites. The glass structure is formed from a glass composition that comprises a first chemical component and a second chemical component. A crystal of the second chemical component has a different second refractive index from a first refractive index of the first chemical component. Each nucleation site defines where a crystal of the second chemical component can be grown. The method includes causing crystals of the second chemical component to grow in situ at a set of the plurality of nucleation sites in order to produce a spatial gradient of a refractive index in the glass structure.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: November 20, 2018
    Assignees: Lockheed Martin Corporation, The Penn State Research Foundation, Clemson University Research Foundation
    Inventors: Clara Rivero Baleine, Theresa S. Mayer, Jonathan David Musgraves, Kathleen Richardson, Peter Wachtel