Patents Assigned to Corning
  • Patent number: 10413481
    Abstract: The present invention is based, at least in part, on the identification of a pharmaceutical container formed, at least in part, of a glass composition which exhibits a reduced propensity to delaminate, i.e., a reduced propensity to shed glass particulates. As a result, the presently claimed containers are particularly suited for storage of pharmaceutical compositions and, specifically, a pharmaceutical solution comprising a pharmaceutically active ingredient, for example, NEUPOGEN (filgrastim), NEULASTA (pegfilgrastim), EPOGEN (epoetin alfa) or ENBREL (etanercept).
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: September 17, 2019
    Assignee: Corning Incorporated
    Inventors: Wendell Porter Weeks, Robert Anthony Schaut, Steven Edward DeMartino, John Stephen Peanasky
  • Patent number: 10419049
    Abstract: Wideband digital distributed communications systems (DCSs) employing reconfigurable digital signal processing circuit for scaling supported communications services are disclosed. The DCS includes a head-end unit that includes front end downlink signal processing circuit to receive and distribute downlink communications signals for communications services (i.e., communications bands) to remote units. The remote units also include front end uplink signal processing circuits to receive uplink communications signals to be distributed to the head-end unit. The front end signal processing circuits are either equipped with broadband filters, or such filters are eliminated, to allow the DCS to be scaled to pass added communications bands.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: September 17, 2019
    Assignee: Corning Incorporated
    Inventors: Solomon Tesfay Abraha, Chun-Hung Ho, Anthony Ng'Oma
  • Patent number: 10418948
    Abstract: Embodiments of the disclosure relate to optimizing power efficiency of a power amplifier circuit to reduce power consumption in a remote unit in a wireless distribution system (WDS). A power amplifier circuit is provided in the remote unit to amplify a received input signal associated with a signal channel(s) to generate an output signal at an aggregated peak power. In this regard, a control circuit is configured to analyze at least one physical property related to the signal channel(s) to determine a maximum output power of the power amplifier circuit. Accordingly, the control circuit configures the power amplifier circuit according to the determined maximum output power. By configuring the maximum output power based on the signal channel(s) in the input signal, it may be possible to optimize the power efficiency of the power amplifier circuit, thus helping to reduce the power consumption of the remote unit.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: September 17, 2019
    Assignee: Corning Optical Communications LLC
    Inventor: Dror Harel
  • Patent number: 10420045
    Abstract: Embodiments of the disclosure relate to a remote antenna unit (RAU) with multiple antenna assembly in a distributed antenna system (DAS). In this regard, an RAU(s) in a DAS includes a plurality of directional antennas, a power generation circuit, and a controller. The power generation circuit is configured to generate a power output having an aggregated power. The controller is configured to allocate the aggregated power to the directional antennas based on a power allocation scheme. By allocating the aggregated power between the directional antennas based on the power allocation scheme, it is possible to programmably control radiation patterns and transmission powers of the directional antennas in the RAU(s). As a result, it is possible to provide optimized radio frequency (RF) coverage throughout a coverage area(s) of the RAU(s) without preconfiguring the radiation patterns and transmission powers of the directional antennas.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: September 17, 2019
    Assignee: Corning Optical Communications LLC
    Inventor: Dror Harel
  • Patent number: 10413482
    Abstract: The present invention is based, at least in part, on the identification of a pharmaceutical container formed, at least in part, of a glass composition which exhibits a reduced propensity to delaminate, i.e., a reduced propensity to shed glass particulates. As a result, the presently claimed containers are particularly suited for storage of pharmaceutical compositions and, specifically, a pharmaceutical solution comprising a pharmaceutically active ingredient.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: September 17, 2019
    Assignee: Corning Incorporated
    Inventors: Wendell Porter Weeks, Robert Anthony Schaut, Steven Edward DeMartino, John Stephen Peanasky
  • Patent number: 10407338
    Abstract: Fusion-formable sodium-containing aluminosilicate and boroaluminosilicate glasses are described. The glasses are particularly useful for controlled release of sodium—useful in semiconductor applications, such as thin film photovoltaics where the sodium required to optimize cell efficiency is to be derived from the substrate glass.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: September 10, 2019
    Assignee: Corning Incorporated
    Inventors: Bruce Gardiner Aitken, Adam James Ellison, James Patrick Hamilton, Timothy James Kiczenski
  • Patent number: 10410883
    Abstract: Methods of forming vias in substrates having at least one damage region extending from a first surface etching the at least one damage region of the substrate to form a via in the substrate, wherein the via extends through the thickness T of the substrate while the first surface of the substrate is masked. The mask is removed from the first surface of the substrate after etching and upon removal of the mask the first surface of the substrate has a surface roughness (Rq) of about less than 1.0 nm.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: September 10, 2019
    Assignee: Corning Incorporated
    Inventors: Robert Alan Bellman, Shiwen Liu
  • Patent number: 10409017
    Abstract: A flexible optical ribbon and associated systems and methods of manufacturing are provided. The ribbon includes a plurality of optical transmission elements and an inner layer comprising a cross-linked polymer material and an outer surface. The outer surface of the inner layer includes first areas having first concentrations of uncrosslinked polymer material and second areas having second concentrations of uncrosslinked polymer material. The first concentrations are greater than the second concentrations. The ribbon includes an outer polymer layer having an inner surface interfacing with the outer surface of the inner layer. The outer polymer layer has a higher level of bonding to the inner layer at the first areas than at the second areas due to the ability of the outer polymer material to bond or crosslink with the larger numbers of uncrosslinked polymer material in the first areas.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: September 10, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: David Wesley Chiasson, Barada Kanta Nayak, Julie Ann Chalk, Rebecca Elizabeth Sistare
  • Patent number: 10409019
    Abstract: An optical cable assembly is provided. The cable assembly includes a plurality of subunits surrounded by an outer cable jacket, a furcation unit and optical connectors coupled to the end of each of the subunits. Each of the subunits includes an inner jacket, a plurality of optical fibers; and a tensile strength element. The first tensile strength element and the inner jackets of each subunits are coupled to the furcation unit, and the optical fibers and tensile strength elements of each subunit extend through the furcation unit without being coupled to the furcation unit. The subunit tensile strength element and optical fibers of each subunit are balanced such that both experience axial loading applied to the assembly and, under various loading conditions, the compression of the subunits is controlled and/or the axial loading of the optical fibers is limited to allow proper function of the optical connector.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: September 10, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: William Eric Caldwell, Terry Lee Ellis, William Carl Hurley, William Welch McCollough, Mark Tracy Paap
  • Patent number: 10407337
    Abstract: According to some embodiments method for making an optical fiber preform comprises the steps of: (i) placing a plurality of rods with an outer surface having a coefficient of friction 0.02?COF?0.3 into an inner cavity of an apparatus; (ii) placing particulate glass material in the inner cavity between the rods and an inner wall of the mold cavity; and (iii) applying pressure against the particulate glass material to press the particulate glass material against the plurality of rods.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: September 10, 2019
    Assignee: Corning Incorporated
    Inventors: Daniel Robert Boughton, James Gerard Fagan, Larry Gleason Hubbard, Jr., Ji Wang
  • Patent number: 10409021
    Abstract: A holder for a plurality of fiber optic cable modules. The holder may includes a tray, wherein the tray is movably positionable in a chassis; and a plurality of mounts coupled to the tray, each mount configured to releasably retain a module of a plurality of various types of modules relative to the tray.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: September 10, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: William Julius McPhil Giraud, Diana Rodriguez
  • Patent number: 10407349
    Abstract: Disclosed herein are methods for making a bonded refractory material, the methods comprising preparing a slurry comprising glass precursor particles having an average particle size ranging from about 1 nm to about 200 nm; combining zirconia particles with the slurry to form a batch composition comprising at least about 80% by weight of zirconia; forming a green body from the batch composition; and sintering the green body to form a sintered refractory material. Sintered high-zirconia refractory materials can comprise at least about 80% by weight of zirconia having an average grain size of 100 microns or less, wherein the zirconia is interspersed in a glassy phase, and wherein the sintered refractory materials comprise about 15% or less by weight of the glassy phase. Melting vessels having at least one interior surface comprising such sintered zirconia refractory materials are further disclosed herein.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: September 10, 2019
    Assignee: Corning Incorporated
    Inventors: Matthew John Dejneka, John Christopher Mauro, Mallanagouda Dyamanagouda Patil, Kim Doreen Pierotti, James Scott Sutherland, Akenda Zellet-Lukaso
  • Patent number: 10401586
    Abstract: A fiber optic module for use in a fiber optic terminal. The fiber optic module includes a body having a front end, a first body section including a first group of adapters on the front end and a first fiber routing arm having a first fiber retaining element at a free end of the first routing arm, and a second body section in stacked alignment with the first body section, wherein the second body section includes a second group of adapters on the front end and a second fiber routing arm having a second fiber retaining element at a free end of the second routing arm. The first body section and the second body section define an internal volume containing an optical splitter. The fiber optic module may also include a handle coupleable to the first body section.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: September 3, 2019
    Assignee: Corning Research & Development Corporation
    Inventors: Joshua David Henley, Diana Rodriguez
  • Patent number: 10400210
    Abstract: An aqueous cell culture medium composition includes an aqueous cell culture solution configured to support the culture of mammalian cells. The composition further includes a synthetic polymer conjugated to a polypeptide dissolved in the aqueous cell culture solution. The synthetic polymer conjugated to a polypeptide is configured to attach to the surface of a cell culture article under cell culture conditions. Incubation of the aqueous cell culture medium composition on a cell culture surface under cell culture conditions results is attachment to the surface of the synthetic polymer conjugated to the polypeptide.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: September 3, 2019
    Assignee: Corning Incorporated
    Inventors: Stephen Joseph Caracci, David Henry, Jessica Jo Kelley, Mark Alan Lewis, Yue Zhou
  • Patent number: 10404099
    Abstract: An intermediate power supply unit for distributing lower voltage power to remote devices is disclosed. The intermediate power supply unit includes a higher voltage power input configured to receive power distributed by a power source and a power coupling circuit configured to couple the higher voltage power input to a plurality of power coupling outputs. If it is determined that a wire coupling the power source to the higher voltage power input is touched, the higher voltage power input is decoupled from the power coupling outputs. The intermediate power supply unit also includes a power converter circuit configured to convert voltage on higher voltage inputs to a lower voltage applied to one or more lower voltage outputs. The power converter circuit is also configured to distribute power from the one or more lower voltage outputs over a power conductor coupled to an assigned remote device.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: September 3, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Jeffrey Albert Bonja, Mark Edward Conner, Ami Hazani
  • Patent number: 10401572
    Abstract: Optical fiber ferrules with complementary mating geometry that are suitable for making optical connections are disclosed along with fiber optic connectors and cable assemblies using the same. In one embodiment, the fiber optic ferrule includes a body having a plurality of optical pathways and a mating geometry that has at least one guide pin that is monolithically formed in the body of the fiber optic ferrule and at least one spring retention feature disposed on a rear portion of the ferrule. The ferrule reduces the number of parts required for a fiber optic connector and allows quick and easy assembly. The disclosure is also directed to fiber optic connectors and cable assemblies using the ferrule.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: September 3, 2019
    Assignee: Corning Optical Communications, LLC
    Inventors: Micah Colen Isenhour, Dennis Michael Knecht, James Phillip Luther, Thomas Theuerkorn
  • Patent number: 10405356
    Abstract: Distribution of management services in distributed antenna systems having a central unit and remote units configured to time-division multiplex (TDM) downlink and/or uplink management signals into time slots to form a TDM management frame signal. In this manner, collision will not occur between multiple management signals communicated over a common communications medium at the same time in the distributed antenna system. Collision detection and management mechanism can add design complexity, cost by requiring additional components, and require additional area on electronic boards. The TDM management frame signal may also be modulated at a carrier frequency before being combined with RF communications signals so that the combined signals are within a linear range of shared certain communications components to reduce cost and area.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: September 3, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Ami Hazani, Ofer Nisan
  • Patent number: 10399304
    Abstract: A glass article includes a glass core layer and a glass cladding layer adjacent to the core layer. An average coefficient of thermal expansion (CTE) of the core layer is greater than an average CTE of the cladding layer. An effective 109.9 P temperature of the glass article is at most about 750° C.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: September 3, 2019
    Assignee: Corning Incorporated
    Inventors: Thomas Michael Cleary, Sinue Gomez, Guangli Hu, Robert Anthony Schaut, Charlene Marie Smith, Natesan Venkataraman
  • Patent number: 10401992
    Abstract: The present invention relates to a substrate for a display device and, more particularly, to a substrate for a display device, which not only has excellent durability, but can also minimize the occurrence of color shift when applied to a display device. To this end, the present invention provides a substrate for a display device, which is characterized by including: a substrate; a hard coat film formed on the substrate and formed of AlON; and a multilayer film formed between the substrate and the hard coat film, and formed of a coating film having a first refractive index and a coating film having a second refractive index, which are repetitively stacked in sequence.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: September 3, 2019
    Assignee: Corning Precision Materials Co., Ltd.
    Inventors: Jin Soo An, Min Seok Kim
  • Patent number: 10401575
    Abstract: A ferrule boot for a fiber optic cable includes a front body portion defining at least one aperture, and includes at least one rear body portion defining at least one guide channel that facilitates insertion of loose optical fiber segments through the at least one aperture. At least a portion of each guide channel lacks a top surface boundary that is registered with a top surface of a corresponding aperture, such that an accessible (e.g., open) top portion is provided to ease insertion of at least one group of optical fibers into the at least one guide channel, with the optical fibers preferably being non-ribbonized. Fiber optic cable assemblies and methods for fabrication utilizing the ferrule boot are further provided.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: September 3, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Cristian Michael Daily, Christopher Paul Lewallen, Hieu Vinh Tran