Patents Assigned to CSMC TECHNOLOGIES FAB1 CO., LTD.
  • Publication number: 20150270139
    Abstract: A corrosion method of a passivation layer (320) of a silicon wafer (300) includes: pouring hydrofluoric acid solution (100) into a container (200) with an open top; putting the silicon wafer (300) to the opening of the container (200) and one side of the silicon wafer (300) with the passivation layer (320) is opposite to the hydrofluoric acid solution (100); the hydrogen fluoride gas generated from the volatilization of the hydrofluoric acid solution (100) corrodes the passivation layer (320) of the silicon wafer (300), the corrosion time is larger or equal to (thickness of the passivation layer/corrosion rate). By means of the corrosion of the passivation layer of silicon wafer by the fluoride gas generated from the volatilization of the hydrofluoric acid solution, the fluoride gas can fully touch the passivation layer; therefore the passivation layer can be completely corroded, and the corrosion precision is high.
    Type: Application
    Filed: December 31, 2013
    Publication date: September 24, 2015
    Applicant: CSMC TECHNOLOGIES FAB1 CO., LTD.
    Inventor: Qiliang Sun
  • Publication number: 20150233965
    Abstract: A parallel plate capacitor includes a first polar plate (10), and a second polar plate disposed opposite to the first polar plate (10). The parallel plate capacitor further includes at least a pair of sensitive units disposed on a substrate forming the first polar plate (10); the sensitive units includes sensitive elements (21a, 21b, 22a, 22b) and element connecting arms (23a, 23b, 24a, 24b) connecting the sensitive elements (21a, 21b, 22a, 22b) to the first polar plate (10). The parallel plate capacitor further includes anchoring bases (30, 31, 32, 33) disposed on a substrate where the second polar plate is located; the anchoring bases (30, 31, 32, 33) are connected to the element connecting arms (23a, 23b, 24a, 24b) via cantilever beams (30a, 30b, 31a, 31b, 32a, 32b, 33a, 33b); each element connecting arm (23a, 23b, 24a, 24b) is connected to at least two anchoring bases (30, 31, 32, 33), which are symmetric with respect to the element connecting arm.
    Type: Application
    Filed: August 30, 2013
    Publication date: August 20, 2015
    Applicant: CSMC TECHNOLOGIES FAB1 CO., LTD.
    Inventors: Meihan Guo, Xinwei Zhang, Changfeng Xia, Wei Su
  • Publication number: 20150227048
    Abstract: A photolithography method and system based on a high step slope are provided. The method includes: S1, manufacturing a sacrificial layer with a high step slope on a substrate; S2, adopting a spin-on PR coating process to cover the sacrificial layer with a photoresist layer to form a photolithographic layer; S3, forming a mask pattern and a compensation pattern on a mask; and S4, performing photolithography processes, by a photolithography machine, on the photolithographic layer. By forming a slope-top compensation pattern and a slope compensation pattern on a mask to perform photolithography on the substrate of a sacrificial layer, a relatively wide compensation pattern is set in a part of the top of the slope with a small thickness, thereby compensating the overexposure at the top of the slope, reducing the error in the photolithographic pattern, and improving the precision of photolithography of the high step slope.
    Type: Application
    Filed: September 3, 2013
    Publication date: August 13, 2015
    Applicant: CSMC TECHNOLOGIES FAB1 CO., LTD.
    Inventor: Jiale Su
  • Publication number: 20150214061
    Abstract: The present invention provides a method of fabricating a trench field-effect device. The method includes: providing a substrate including an epitaxial layer formed on a semiconductor substrate of the substrate and a trench formed in the epitaxial layer; forming a sacrificial dielectric layer on a bottom and a sidewall of the trench; forming a heavily-doped polysilicon region at the bottom, and removing part of the sacrificial dielectric layer not covered by the heavily-doped polysilicon region to expose an epitaxial layer of the sidewall; and oxidizing the heavily-doped polysilicon region and the epitaxial layer simultaneously and forming a thick oxide layer and a trench sidewall gate dielectric layer synchronously on the bottom and the sidewall, respectively; wherein thickness of the thick oxide layer is greater than that of the trench sidewall gate dielectric layer. The method is simple, and figure of merit of the fabricated trench field-effect device is reduced.
    Type: Application
    Filed: July 18, 2012
    Publication date: July 30, 2015
    Applicant: CSMC TECHNOLOGIES FAB1 CO., LTD.
    Inventors: Hongwei Zhou, Dongyue Gao
  • Patent number: 9093464
    Abstract: A method for fabricating a small-scale MOS device, including: preparing a substrate; forming a first trench in the substrate along a first side of the gate region and forming a second trench in the substrate along a second side of the gate region, the first side of the gate region opposite the second side of the gate region; forming a first lightly doped drain region and a second lightly doped drain region in the first trench and the second trench, respectively; forming a third trench in the substrate overlapping at least a first portion of the first lightly doped drain region and a fourth trench in the substrate overlapping at least a first portion of the second lightly doped drain region; and forming a source region and a drain region in the third trench and the fourth trench, respectively.
    Type: Grant
    Filed: October 9, 2011
    Date of Patent: July 28, 2015
    Assignees: CSMC TECHNOLOGIES FAB1 CO., LTD., CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventor: Le Wang
  • Publication number: 20150179437
    Abstract: A method for manufacturing a silicon nitride thin film comprises a step of charging silane, ammonia gas and nitrogen gas at an environment temperature below 350° C. to produce and deposit a silicon nitride thin film, wherein a rate of charging silane is 300-350 sccm, a rate of charging ammonia gas is 1000 sccm, a rate of charging nitrogen gas is 1000 sccm; a power of a high frequency source is 0.15˜0.30 KW, a power of a low frequency source is 0.15˜0.30 KW; a reaction pressure is 2.3˜2.6 Torr; a reaction duration is 4˜6 s. The above method for manufacturing a silicon nitride thin film provides a preferable parameter range and preferred parameters for generating a low-stress SIN thin film at low temperatures, achieves manufacture of a low-stress SIN thin film at low temperatures, and thus, better satisfies the situation requiring a low-stress SIN thin film.
    Type: Application
    Filed: July 30, 2013
    Publication date: June 25, 2015
    Applicant: CSMC TECHNOLOGIES FAB1 CO., LTD.
    Inventor: Zhanxin Li
  • Publication number: 20150175409
    Abstract: Provided is a method for fabricating a multi-trench structure, including steps of: performing anisotropic etching on a semiconductor substrate so as to form a vertical trench; growing a first epitaxial layer on the semiconductor substrate in which the vertical trench has been formed, so that the first epitaxial layer covers the top of the vertical trench to form a closed structure; performing anisotropic and isotropic etching on the closed structure, so as to form a trench array, and to make the trench array communicate with the vertical trench, the trench array including a number of trenches or vias, upper portions of a number of trenches or vias being separated from each other, and lower portions thereof communicating with each other to form a cavity; and growing a second epitaxial layer to cover the trench array, so as to form a closed multi-trench structure.
    Type: Application
    Filed: August 19, 2013
    Publication date: June 25, 2015
    Applicant: CSMC TECHNOLOGIES FAB1 CO., LTD.
    Inventors: Xinwei Zhang, Dan Dai, Guoping Zhou, Changfeng Xia
  • Patent number: 9059202
    Abstract: A Metal-Oxide-Semiconductor (MOS) device is disclosed. The MOS device includes a substrate, a well region formed in the substrate, and a gate located on the substrate. The MOS device also includes a first lightly-doped region arranged in the well region at a first side of the gate and overlapping with the gate, and a second lightly-doped region arranged in the well region at a second side of the gate and overlapping with the gate. Further, the MOS device includes a first heavily-doped region formed in the first lightly-doped region, and a second heavily-doped region formed in the second lightly-doped region. The MOS device also includes a first high-low-voltage gate oxide boundary arranged between the first heavily-doped region and the gate, and a second high-low-voltage gate oxide boundary arranged between the second heavily-doped region and the gate.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: June 16, 2015
    Assignees: CSMC TECHNOLOGIES FAB1 CO., LTD., CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventor: Yan Jin
  • Publication number: 20150155182
    Abstract: Disclosed is a method for removing a polysilicon protection layer (12) on a back face of an IGBT having a field stop structure (10). The method comprises thermally oxidizing the polysilicon protection layer (12) on the back face of the IGBT until the oxidation is terminated on a gate oxide layer (11) located above the polysilicon protection layer (12) to form a silicon dioxide layer (13), and removing the formed silicon dioxide layer (13) and the gate oxide layer (11) by a dry etching process. The method for removing the protection layer is easier to control.
    Type: Application
    Filed: July 25, 2013
    Publication date: June 4, 2015
    Applicant: CSMC TECHNOLOGIES FAB1 CO., LTD.
    Inventors: Qiang Rui, Shuo Zhang, Genyi Wang, Xiaoshe Deng
  • Patent number: 8957494
    Abstract: A high-voltage Schottky diode and a manufacturing method thereof are disclosed in the present disclosure. The diode includes: a P-type substrate and two N-type buried layers, a first N-type buried layer is located below a cathode lead-out area, and a second N-type buried layer is located below a cathode region; an epitaxial layer; two N-type well regions located on the epitaxial layer, a first N-type well region is a lateral drift region and it is provided with a cathode lead-out region, and a second N-type well region is located on the second N-type buried layer and it is a cathode region; a first P-type well region located on the second N-type buried layer and surrounding the cathode region; a field oxide isolation region located on the lateral drift region; an anode located on the cathode region and a cathode located on the surface of the cathode lead-out region.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: February 17, 2015
    Assignee: CSMC Technologies FAB1 Co., Ltd.
    Inventor: Lihui Gu
  • Patent number: 8956972
    Abstract: A method for manufacturing a semiconductor thick metal structure includes a thick metal deposition step, a metal patterning step, and a passivation step. In the thick metal deposition step, a Ti—TiN laminated structure is used as an anti-reflection layer to implement 4 ?m metal etching without residue. In the metal patterning step, N2 is used for the protection of a sidewall to implement on a 4 ?m metal concave-convex structure a tilt angle of nearly 90 degrees, and a main over-etching step is added to implement the smoothness of the sidewall of the 4 ?m metal concave-convex structure. A half-filled passivation filling structure is used to implement effective passivation protection of 1.5 um metal gaps having less than 4 um of metal thickness. Manufacturing of the 4 ?m thick metal structure having a linewidth/gap of 1.5 ?m/1.5 ?m is finally implemented.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: February 17, 2015
    Assignee: CSMC Technologies Fab1 Co., Ltd.
    Inventors: Hsiao-Chia Wu, Shilin Fang, Tse-Huang Lo, Zhengpei Chen, Shu Zhang
  • Patent number: 8927386
    Abstract: The present invention provides a method for manufacturing a deep-trench super PN junction. The method includes: a deposition step for forming an epitaxial layer on a substrate; forming a first dielectric layer and a second dielectric layer in sequence on the epitaxial layer; forming deep trenches in the epitaxial layer; completely filling the deep trenches with an epitaxial material and the epitaxial material is beyond the second dielectric layer; filling the entire surface of the second dielectric layer and the epitaxial layer such as Si using a third dielectric to from a surface filling layer with a predetermined height; etching back on the surface filling layer to the interface of the first dielectric layer and the epitaxial layer; and a removing step for removing the first dielectric layer, the second dielectric layer and the surface filling layer to planarize Si epitaxial material.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: January 6, 2015
    Assignees: CSMC Technologies FAB1 Co., Ltd., CSMC Technologies FAB2 Co., Ltd.
    Inventors: Tzong Shiann Wu, Genyi Wang, Leibing Yuan, Pengpeng Wu
  • Patent number: 8895398
    Abstract: A method is provided for manufacturing a double-gate structure. The method includes providing a substrate and forming a first gate region on a surface of the substrate using a first gate layer. The method also includes forming a second gate layer on the surface of the substrate, wherein the second gate layer covers the first gate region, forming an etch-stop layer on the second gate layer, and forming a silicide layer on the etch-stop layer. The method also includes forming a second gate region, different from the first gate region, containing the second gate layer and the silicide layer without the etch-stop layer. Further, the etch-stop layer is arranged between the second gate layer and the silicide layer to facilitate even etching of the second gate layer around the first gate region.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: November 25, 2014
    Assignees: CSMC Technologies Fab1 Co., Ltd., CSMC Technologies Fab2 Co., Ltd.
    Inventor: Le Wang
  • Patent number: 8890259
    Abstract: An SCR apparatus includes an SCR structure and a first N injection region. The SCR structure includes a P+ injection region, a P well, an N well and a first N+ injection region, the first N injection region is located under an anode terminal of the P+ injection region of the SCR structure. A method for adjusting a sustaining voltage therefor is provided as well.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: November 18, 2014
    Assignees: CSMC Technologies Fab1 Co., Ltd., CSMC Technologies FAB2 Co., Ltd.
    Inventors: Meng Dai, Zhongyu Lin
  • Patent number: 8889535
    Abstract: The present disclosure provides a semiconductor device and a method for fabricating a semiconductor buried layer. The method includes: preparing a substrate which includes a first oxide layer; forming a first buried layer region in the surface of the substrate by using a photoresist layer with a first buried layer region pattern as a mask, in which a doping state of the first buried layer region is different from a doping state of other region of the substrate; forming a second oxide layer on the surface of the substrate and the first buried layer region; and forming a second buried layer region in the surface of the substrate through self alignment process by using the second oxide layer as a mask. The method disclosed by the present disclosure reduces the complexity of the buried layer procedures and the cost thereof, as well as the probability of crystal defects.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: November 18, 2014
    Assignees: CSMC Technologies FAB1 Co., Ltd., CSMC Technologies FAB2 Co., Ltd.
    Inventors: Hua Song, Hsiao-Chia Wu, Tse-Huang Lo
  • Patent number: 8884603
    Abstract: A reference power supply circuit includes an adjustable resistance network and a bandgap reference power supply circuit, in which the adjustable resistance network includes a first resistor end and a second resistor end, the resistance between the first resistor end and the second resistor end varies with a process deviation; the bandgap reference power supply circuit connects the first resistor end with the second resistor end, for generating a positive proportional to absolute temperature current flowing through the first resistor end and the second resistor end and for outputting a reference voltage related to the positive proportional to absolute temperature current. The reference power supply circuit has the advantageous of high precision and good temperature drift characteristic.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: November 11, 2014
    Assignees: CSMC Technologies FAB1 Co., Ltd., CSMC Technologies FAB2 Co., Ltd.
    Inventor: Liang Cheng
  • Publication number: 20140329385
    Abstract: A method for manufacturing a semiconductor thick metal structure includes a thick metal deposition step, a metal patterning step, and a passivation step. In the thick metal deposition step, a Ti—TiN laminated structure is used as an anti-reflection layer to implement 4 ?m metal etching without residue. In the metal patterning step, N2 is used for the protection of a sidewall to implement on a 4 ?m metal concave-convex structure a tilt angle of nearly 90 degrees, and a main over-etching step is added to implement the smoothness of the sidewall of the 4 ?m metal concave-convex structure. A half-filled passivation filling structure is used to implement effective passivation protection of 1.5 um metal gaps having less than 4 um of metal thickness. Manufacturing of the 4 ?m thick metal structure having a linewidth/gap of 1.5 ?m/1.5 ?m is finally implemented.
    Type: Application
    Filed: October 12, 2012
    Publication date: November 6, 2014
    Applicant: CSMC TECHNOLOGIES FAB1 CO., LTD.
    Inventors: Hsiao-Chia Wu, Shilin Fang, Tse-Huang Lo, Zhengpei Chen, Shu Zhang
  • Patent number: 8836427
    Abstract: A folded cascode operational amplifier is disclosed. The folded cascode operational amplifier includes a first current source, a second current source, and a first voltage terminal connected to the first current source and the second current source. The folded cascode operational amplifier also includes a first input-transistor connected to the first current source in series, and a second input-transistor connected to the second current source in series. Further, the folded cascode operational amplifier includes a tail current source connected to a connection point between the first input-transistor and the second input-transistor, a load current source, and a second voltage terminal connected to the tail current source and the load current source. The folded cascode operational amplifier also includes an output-transistor connected to the load current source, and an output-terminal arranged between the second current source and the second input-transistor and connected to the output-transistor.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: September 16, 2014
    Assignees: CSMC Technologies FAB1 Co., Ltd., CSMC Technologies FAB2 Co., Ltd.
    Inventor: Liang Cheng
  • Patent number: 8836419
    Abstract: The present disclosure generally relates to a PWM comparator and a class D amplifier. The PWM comparator described above introduces current feedback mechanism, basing the waveform state of received high frequency triangle signal and the level state of output signal of the PWM comparator, the hysteresis is changing dynamically. In the same resolution, the noise resistance ability of the PWM comparator described above is much better than that of the conventional PWM comparators which has a fixed hysteresis, thus the PWM comparator can work stably even if the duty cycle of output signal is nearly 100%.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: September 16, 2014
    Assignees: CSMC Technologies Fab1 Co., Ltd., CSMC Technologies Fab2 Co., Ltd.
    Inventor: Liang Cheng
  • Publication number: 20140231893
    Abstract: A capacitor and a method of fabricating thereof are provided. A structure of low pressure tetraethyl orthosilicate-low pressure silicon nitride-low pressure tetraethyl orthosilicate is used in the capacitor to replace the oxide-nitride-oxide structure of the existing capacitor; the capacitor has a relatively high unit capacitance value. Furthermore, the structure of low pressure tetraethyl orthosilicate—low pressure silicon nitride—low pressure tetraethyl orthosilicate is fabricaited by low pressure chemical vapor deposition method at relatively low temperature; thus the heat produced in the whole process is relatively low, which is insufficient to make the semiconductor device shift or make the gate metal layer or the metallized silicon layer peel off. Accordingly, the capacitor and the method of fabricating the capacitor of the present invention can be well applied in the process of the 0.5 ?m PIP capacitor or below 0.5 ?m.
    Type: Application
    Filed: August 2, 2012
    Publication date: August 21, 2014
    Applicant: CSMC TECHNOLOGIES FAB1 CO., LTD.
    Inventors: Rengang Qin, Dejin Wang, Boyong He