Patents Assigned to CSMC TECHNOLOGIES FAB1 CO., LTD.
  • Patent number: 8803250
    Abstract: A Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) is disclosed. The MOSFET includes a substrate, a well region formed in the substrate, a shallow channel layer, a channel, a gate oxide layer, a gate region, a source region, and a drain region. The shallow channel layer is formed on a portion of the well region and includes a first shallow channel region and a second shallow channel region. The channel is arranged between the first shallow channel region and the second shallow channel region and connects the first shallow channel region and the second shallow channel region. Further, the gate oxide layer is formed on a portion of the well region between the first shallow channel region and the second shallow channel region and includes a first gate oxide region and a second gate oxide region arranged on different sides of the channel.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: August 12, 2014
    Assignees: CSMC Technologies FAB1 Co., Ltd., CSMC Technologies FAB2 Co., Ltd.
    Inventor: Le Wang
  • Patent number: 8772864
    Abstract: A trench Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) device is disclosed. The trench MOSFET device includes a substrate, a body region, a source region, a dielectric layer, a metal layer, a contact hole, and a trench structure. The substrate includes a substrate layer and an epitaxial layer formed on the substrate layer; the body region is formed in the epitaxial layer; and the source region is formed in the body region of the epitaxial layer. Further, the dielectric layer is formed on the epitaxial layer; the metal layer is formed on the dielectric layer; and the contact hole is formed in the dielectric layer to connect the source region with the metal layer. In addition, the trench structure is formed in the epitaxial layer, and the trench structure includes a first trench that is a pectinate trench including a plurality of tooth trenches and a bar trench interconnecting the plurality of tooth trenches.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: July 8, 2014
    Assignees: CSMC Technologies Fab1 Co., Ltd., CSMC Technologies Fab2 Co., Ltd.
    Inventor: Jiakun Wang
  • Publication number: 20140167045
    Abstract: A test pattern for testing a trench POLY over-etched step is provided. The test pattern is a trench (14) formed on a substrate (1); the trench (14) comprises a bottom surface and two side surfaces extending from the bottom surface; the trench (14) is formed on the substrate (1) with a preset angle of non-90° formed between the longitudinal direction (L) thereof and the longitudinal direction (X) of a wafer scribing trench. The test pattern can extend the scanning length of a step scanning equipment without changing the width of the trench.
    Type: Application
    Filed: June 7, 2012
    Publication date: June 19, 2014
    Applicants: CSMC TECHNOLOGIES FAB2 CO., LTD., CSMC TECHNOLOGIES FAB1 CO., LTD.
    Inventor: Zheng Bian
  • Publication number: 20140147980
    Abstract: The present invention relates to the technical field of semiconductor manufacturing. A method for manufacturing a semiconductor device is disclosed, which solves the problem in the prior art that the silicon on the edge of an oxide layer in an LDMOS drift region is easily exposed and causes breakdown of an LDMOS device. The method includes: providing a semiconductor substrate comprising an LDMOS region and a CMOS region; forming a sacrificial oxide layer on the semiconductor substrate; removing the sacrificial oxide layer; forming a masking layer on the semiconductor substrate after the sacrificial oxidation treatment; using the masking layer as a mask to form an LDMOS drift region, and forming a drift region oxide layer above the drift region; and removing the masking layer. The embodiment of the present invention is applicable to a BCD process and the like.
    Type: Application
    Filed: November 28, 2012
    Publication date: May 29, 2014
    Applicant: CSMC TECHNOLOGIES FAB1 CO., LTD.
    Inventors: Hsiaochia Wu, Shilin Fang, Tsehuang Lo, Zhengpei Chen, Shu Zhang, Yanqiang He
  • Publication number: 20140145290
    Abstract: A high-voltage Schottky diode and a manufacturing method thereof are disclosed in the present disclosure. The diode includes: a P-type substrate and two N-type buried layers, a first N-type buried layer is located below a cathode lead-out area, and a second N-type buried layer is located below a cathode region; an epitaxial layer; two N-type well regions located on the epitaxial layer, a first N-type well region is a lateral drift region and it is provided with a cathode lead-out region, and a second N-type well region is located on the second N-type buried layer and it is a cathode region; a first P-type well region located on the second N-type buried layer and surrounding the cathode region; a field oxide isolation region located on the lateral drift region; an anode located on the cathode region and a cathode located on the surface of the cathode lead-out region.
    Type: Application
    Filed: October 23, 2012
    Publication date: May 29, 2014
    Applicant: CSMC TECHNOLOGIES FAB1 CO., LTD.
    Inventor: Lihui Gu
  • Patent number: 8729669
    Abstract: A method for manufacturing a bipolar transistor includes forming a first epitaxial layer on a semiconductor substrate, forming a second epitaxial layer on the first epitaxial layer, forming an oxide layer on the second epitaxial layer, etching the oxide layer to form an opening in which the second epitaxial layer is exposed, and forming a third epitaxial layer in the opening. The first and third epitaxial layers have a first-type conductivity, and the second epitaxial layer has a second-type conductivity.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: May 20, 2014
    Assignees: CSMC Technologies FAB1 Co., Ltd., CSMC Technologies FAB2 Co., Ltd.
    Inventors: Le Wang, Linchun Gui, Kongwei Zhu, Zhiyong Zhao
  • Patent number: 8530961
    Abstract: A method for manufacturing compatible vertical double diffused metal oxide semiconductor (VDMOS) transistor and lateral double diffused metal oxide semiconductor (LDMOS) transistor includes: providing a substrate having an LDMOS transistor region and a VDMOS transistor region; forming an N-buried region in the substrate; forming an epitaxial layer on the N-buried layer region; forming isolation regions in the LDMOS transistor region and the VDMOS transistor region; forming a drift region in the LDMOS transistor region; forming gates in the LDMOS transistor region and the VDMOS transistor region; forming PBODY regions in the LDMOS transistor region and the VDMOS transistor region; forming an N-type GRADE region in the LDMOS transistor region; forming an NSINK region in the VDMOS transistor region, where the NSINK region is in contact with the N-buried layer region; forming sources and drains in the LDMOS transistor region and the VDMOS transistor region; and forming a P+ region in the LDMOS transistor region,
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: September 10, 2013
    Assignee: CSMC Technologies FAB1 Co., Ltd.
    Inventors: Linchun Gui, Le Wang, Zhiyong Zhao, Lili He
  • Publication number: 20130099755
    Abstract: A lithium battery protection circuit coupled to a lithium battery is provided. The lithium battery protection circuit includes an over-charge protection circuit and a logic circuit coupled to over-charge protection circuit. The logic circuit has a first logic output and a second logic output. The lithium battery protection circuit also includes a level shift circuit coupled to the logic circuit through the first logic output and the second logic output, and the level shift circuit is configured to convert the first logic output and the second logic output to high voltage levels in an over-charge protection state. Further, the lithium battery protection circuit includes a substrate switching circuit coupled to the level shift circuit and a power transistor coupled between a negative end of the lithium battery and an external circuit negative electrode.
    Type: Application
    Filed: November 29, 2011
    Publication date: April 25, 2013
    Applicants: CSMC TECHNOLOGIES FAB2 CO., LTD., CSMC TECHNOLOGIES FAB1 CO., LTD.
    Inventor: Shunhui Lei
  • Publication number: 20130037878
    Abstract: A method for fabricating VDMOS devices includes providing a semiconductor substrate; forming a first N-type epitaxial layer on the semiconductor substrate; forming a hard mask layer with an opening on the first N-type epitaxial layer; etching the first N-type epitaxial layer along the opening until the semiconductor substrate is exposed, to form P-type barrier figures; forming a P-type barrier layer in the P-type barrier figures, the P-type barrier layer having a same thickness as that of the first N-type epitaxial layer; removing the hard mask layer; forming a second N-type epitaxial layer on the first N-type epitaxial layer and the P-type barrier layer; forming a gate on the second N-type epitaxial layer; forming a source in the second N-type epitaxial layer on both side of the gate; and forming a drain on the back of the semiconductor substrate relative to the gate and the source.
    Type: Application
    Filed: June 23, 2011
    Publication date: February 14, 2013
    Applicants: CSMC TECHNOLOGIES FAB2 CO., LTD., CSMC TECHNOLOGIES FAB1 CO., LTD.
    Inventor: Le Wang
  • Publication number: 20130001747
    Abstract: A method for manufacturing a bipolar transistor includes forming a first epitaxial layer on a semiconductor substrate, forming a second epitaxial layer on the first epitaxial layer, forming an oxide layer on the second epitaxial layer, etching the oxide layer to form an opening in which the second epitaxial layer is exposed, and forming a third epitaxial layer in the opening. The first and third epitaxial layers have a first-type conductivity, and the second epitaxial layer has a second-type conductivity.
    Type: Application
    Filed: December 2, 2010
    Publication date: January 3, 2013
    Applicants: CSMC TECHNOLOGIES FAB2 CO., LTD., CSMC TECHNOLOGIES FAB1 CO., LTD.
    Inventors: Le Wang, Linchun Gui, Kongwei Zhu, Zhiyong Zhao
  • Publication number: 20120178230
    Abstract: A method for fabricating trench DMOS transistor includes: forming an oxide layer and a barrier layer with photolithography layout sequentially on a semiconductor substrate; etching the oxide layer and the semiconductor substrate with the barrier layer as a mask to form a trench; forming a gate oxide layer on the inner wall of the trench; forming a polysilicon layer on the barrier layer, filling up the trench; etching back the polysilicon layer with the barrier layer mask to remove the polysilicon layer on the barrier layer to form a trench gate; removing the barrier layer and the oxide layer; implanting ions into the semiconductor substrate on both sides of the trench gate to form a diffusion layer; coating a photoresist layer on the diffusion layer and defining a source/drain layout thereon; implanting ions into the diffusion layer based on the source/drain layout with the photoresist layer mask to form the source/drain; forming sidewalls on both the sides of the trench gate after removing the photoresist la
    Type: Application
    Filed: September 26, 2010
    Publication date: July 12, 2012
    Applicants: CSMC TECHNOLOGIES FAB2 CO., LTD., CSMC TECHNOLOGIES FAB1 CO., LTD.
    Inventor: Le Wang