Patents Assigned to Cummins Emission Solutions Inc.
  • Publication number: 20190249582
    Abstract: An aftertreatment system comprises a reductant storage tank and a SCR system including a catalyst for reducing constituents of an exhaust gas. A reductant insertion assembly is fluidly coupled to the reductant storage tank and the SCR system. A controller is communicatively coupled to the reductant insertion assembly. The controller is configured to: determine an initial pressure of the reductant, determine a first pressure at which the reductant is to be delivered to the selective catalytic reduction system and adjust an operating parameter of the reductant insertion assembly. The adjustment of the operating parameter results in an at least selective delivery of the reductant at the first pressure to the SCR system.
    Type: Application
    Filed: April 26, 2019
    Publication date: August 15, 2019
    Applicant: Cummins Emission Solutions Inc.
    Inventors: Friedrich J. Zapf, Stephen M. Holl, John D. Crofts
  • Publication number: 20190240619
    Abstract: A polygonal substrate assembly includes a polygonal substrate housing, a substrate, and a compressible mat. The compressible mat is positioned about the substrate and the substrate is press-fit within the polygonal substrate housing with the compressible mat. The polygonal substrate housing may include a sidewall having a concave portion. The polygonal substrate housing may include a substrate installation portion that flares out from a main sidewall at an end of the polygonal substrate housing. The polygonal substrate housing may be formed from a plurality of substrate housing components welded together. The polygonal substrate housing can include one or more stiffening ribs. Several polygonal substrate assemblies may be combined and coupled together to form an array in various geometric configurations.
    Type: Application
    Filed: July 20, 2017
    Publication date: August 8, 2019
    Applicant: CUMMINS EMISSION SOLUTIONS INC.
    Inventors: George E. Mavroudis, Taren Dehart, Daniel W. Woods, Ryan M. Johnson, Colin L. Norris, Randolph G. Zoran
  • Patent number: 10371036
    Abstract: A system and method for monitoring filtering condition in an aftertreatment system comprises measuring a first pressure upstream of a first particulate filter in the aftertreatment system. A second pressure downstream of the first particulate filter and upstream of a second particulate filter in the aftertreatment system is measured. A third pressure downstream of the second particulate filter is also measured. A difference in pressure between the second pressure and the third pressure is determined which corresponds to a filtering condition of the first particulate filter. The difference in pressure is compared with a predetermined threshold. If the difference in pressure exceeds the predetermined threshold the failure of the first particulate filter is identified.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: August 6, 2019
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Nassim Khaled, Michael Haas
  • Publication number: 20190234271
    Abstract: A reductant insertion system for delivering a reductant to an aftertreatment system comprises a reductant storage tank configured to store a liquid reductant. A pressure relief valve is operably coupled to the reductant storage tank. The pressure relief valve is configured to selectively open in response to a reductant gas pressure in the reductant storage tank exceeding a predetermined reductant gas pressure threshold. A reductant insertion assembly is fluidly coupled to the reductant storage tank and configured to deliver the liquid reductant to the aftertreatment system. The reductant insertion assembly comprises a shutoff valve configured to be selectively closed in response to a liquid reductant pressure in the reductant insertion assembly exceeding a liquid reductant pressure threshold, so as to stop delivery of the reductant from the reductant storage tank to the reductant insertion assembly.
    Type: Application
    Filed: January 30, 2018
    Publication date: August 1, 2019
    Applicant: Cummins Emission Solutions Inc.
    Inventor: Matthew K. Volmerding
  • Publication number: 20190234270
    Abstract: An aftertreatment component's shape, entrance geometry, and/or position within an aftertreatment assembly can be modified for local and/or bulk exhaust flow control. In some implementations, a body of the aftertreatment component has a non-circular cross-section, a non-circular opening, and/or a variable face geometry. The non-circular cross-section and/or opening can be a variety of different shapes.
    Type: Application
    Filed: October 20, 2017
    Publication date: August 1, 2019
    Applicant: CUMMINS EMISSION SOLUTIONS INC.
    Inventors: John G. Buechler, Randolph G. Zoran, Ryan M. Johnson, Stephen M. Holl, Taren DeHart, Jim L. Alonzo, Matthew L. Anderson, Apoorv Kalyankar, George Eugene Mavroudis, Gaurav Hemant Pandit
  • Patent number: 10364731
    Abstract: A method for asynchronously delivering a reductant to a first selective catalytic reduction system and a second selective catalytic reduction system of an aftertreatment system via a reductant insertion assembly, the reductant insertion assembly comprising a first injector fluidly coupled to the first selective catalytic reduction system and a second injector fluidly coupled to the second selective catalytic reduction system, the method including: activating the first injector; maintaining the first injector activated for a first delivery time, thereby inserting a first amount of reductant into the first selective catalytic reduction system; deactivating the first injector; activating the second injector; and maintaining the second injector activated for a second delivery time, thereby inserting a second amount of reductant into the second selective catalytic reduction system.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: July 30, 2019
    Assignee: Cummins Emission Solutions Inc.
    Inventor: Nassim Khaled
  • Patent number: 10364725
    Abstract: Systems and methods for an aftertreatment system configured for use with a dual-fuel engine system are described. The method comprises determining an operating mode of the dual-fuel engine. Upon determining that the dual-fuel engine is operating in a dual-fuel mode or a natural gas mode, the dual-fuel engine operates in a stoichiometric operating condition, and the exhaust is received into a three-way catalyst communicatively connected to a selective catalytic reduction catalyst. Upon determining that the dual-fuel engine is not operating in the dual-fuel mode or the natural gas mode, the engine operates in a lean operating condition.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: July 30, 2019
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Yi Liu, Arvind V. Harinath, Arpad Somogyvari
  • Publication number: 20190211729
    Abstract: A reductant insertion assembly includes: a first pump configured to pump a predetermined amount of a reductant into a selective catalytic reduction system; a reductant delivery line configured to deliver the reductant to the first pump from a reductant storage tank; a reductant return line configured to return reductant to the reductant storage tank from the first pump; a second pump configured to pump the reductant from the reductant storage tank to the first pump; and a valve selectively moveable between a closed position in which the second pump pumps the reductant through the reductant delivery line to the first pump, and an open position in which the second pump draws air through the valve and pumps the air through at least a portion of the reductant delivery line downstream of the valve and the first pump to purge the reductant insertion assembly of the reductant.
    Type: Application
    Filed: January 9, 2018
    Publication date: July 11, 2019
    Applicant: Cummins Emission Solutions Inc.
    Inventors: Karan Sanghavi, Nicholas Blodgett
  • Patent number: 10344651
    Abstract: A reductant insertion assembly includes: a first pump configured to pump a predetermined amount of a reductant into a selective catalytic reduction system; a reductant delivery line configured to deliver the reductant to the first pump from a reductant storage tank; a reductant return line configured to return reductant to the reductant storage tank from the first pump; a second pump configured to pump the reductant from the reductant storage tank to the first pump; and a valve selectively moveable between a closed position in which the second pump pumps the reductant through the reductant delivery line to the first pump, and an open position in which the second pump draws air through the valve and pumps the air through at least a portion of the reductant delivery line downstream of the valve and the first pump to purge the reductant insertion assembly of the reductant.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: July 9, 2019
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Karan Sanghavi, Nicholas Blodgett
  • Patent number: 10344649
    Abstract: An aftertreatment system includes an exhaust reductant tank configured to store an exhaust reductant. A filter is fluidically coupled to the exhaust reductant tank. The aftertreatment system includes a hydrocarbon detection device configured to indicate the presence of a hydrocarbon in the exhaust reductant. A catalyst is included in the system and configured to treat the exhaust reductant flowing through the system. The hydrocarbon detection device can include a hydrophobic paper, and can be disposed in the filter.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: July 9, 2019
    Assignee: Cummins Emission Solutions, Inc.
    Inventor: Kevin Gudorf
  • Patent number: 10344652
    Abstract: An aftertreatment system comprises a reductant storage tank and a selective catalytic reduction (SCR) system including a catalyst for reducing constituents of an exhaust gas. A reductant insertion assembly including a pump and dosing valve is fluidly coupled to the pump and the SCR system. A controller is communicatively coupled to the reductant insertion assembly. The controller is configured to initialize the pump so as to pressurize a reductant in the pump. The dosing valve is opened, thereby expelling the reductant into the SCR system. An operating electrical parameter value of the pump is determined which is indicative of an operating pressure of the pump. The controller determines if the operating electrical parameter value exceeds a predetermined operating threshold. If the operating electrical parameter value exceeds the predetermined operating threshold, the controller stops the pump.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: July 9, 2019
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Tobias Englert, Jens Honeck
  • Publication number: 20190203626
    Abstract: An aftertreatment system includes: a selective catalytic reduction system including at least one catalyst for decomposing constituents of an exhaust gas produced by an engine, the exhaust gas having a pressure pulsation frequency; an exhaust conduit fluidly coupled to the selective catalytic reduction system and structured to deliver the exhaust gas to the selective catalytic reduction system from the engine; at least one mixer positioned in the exhaust conduit; and a reductant insertion assembly fluidly coupled to the exhaust conduit and structured to insert a reductant into the exhaust conduit upstream of the at least one mixer. The at least one mixer is structured to have a natural frequency matching the pressure pulsation frequency so as to cause resonant vibration in the at least one mixer, the resonant vibration causing reductant deposits to be removed from the at least one mixer.
    Type: Application
    Filed: October 23, 2018
    Publication date: July 4, 2019
    Applicant: CUMMINS EMISSION SOLUTIONS INC.
    Inventors: Atul S. Abhyankar, Ronald Hale
  • Publication number: 20190203627
    Abstract: Systems, methods, and apparatuses for adaptive regeneration of aftertreatment system components. The system may include an aftertreatment system and a controller. The controller is configured to access one or more parameters indicative of an ambient condition, determine a regeneration type of a regeneration process for a component of the aftertreatment system, determine an application in condition, and modify a parameter for the regeneration process for the component of the aftertreatment system. In some instances, the controller initiates the regeneration process. In some instances, the one or more parameters include an ambient air temperature, a reductant tank temperature, or a particulate matter sensor temperature. In some instances, the modified parameter includes a target regeneration temperature, a regeneration duration, a dwell time between regeneration process, a threshold value for the regeneration process, or a minimum regeneration temperature.
    Type: Application
    Filed: August 14, 2017
    Publication date: July 4, 2019
    Applicant: Cummins Emission Solutions Inc.
    Inventors: Yinghuan Lei, Todd A. Corbet, Robert Edward Cochran, Sergio M. Hernandez-Gonzalez, Uma Vajapeyazula, Weichao Wang, Marc A Greca, Joseph M. Brault
  • Publication number: 20190203624
    Abstract: System and methods for detecting NH3 slip using cross-sensitivity of an NOx sensor may include accessing a temperature value for a catalyst and determining the temperature value for the catalyst exceeds a predetermined value. If the temperature exceeds the predetermined value, a system-out NOx measurement signal from the system-out NOx sensor and an estimated system-out NOx value are used to calculate a delta value. A flag is set indicative of NH3 slip for an exhaust system responsive to an average of delta values for a predetermined period of time exceeding a predetermined value. If the temperature does not exceed the predetermined value, then an average of a plurality of system-out NOx measurement signals can be calculated and a flag is set indicative of NH3 slip responsive to the calculated average for a predetermined period of time exceeding a predetermined value.
    Type: Application
    Filed: June 27, 2017
    Publication date: July 4, 2019
    Applicant: Cummins Emission Solutions Inc.
    Inventors: Jinqian GONG, Varun R. RAJAGOPAL
  • Publication number: 20190204282
    Abstract: A system includes: a NOx sensor; and a controller configured to: increase an amount of O2 in a chamber of the NOx sensor; interpret one or more values of a parameter indicative an amount of O2 and/or NOx measured by the NOx sensor; determine if the one or more values of the parameter exceed a threshold value; and indicate a failure of the NOx sensor responsive to the one or more values of the parameter do not exceed the threshold value.
    Type: Application
    Filed: March 8, 2019
    Publication date: July 4, 2019
    Applicant: Cummins Emission Solutions, Inc.
    Inventors: Jinqian Gong, Sergio Manuel Hernandez-Gonzalez, Ruqiat O. Shifatu-Badru
  • Publication number: 20190195106
    Abstract: An aftertreatment system structured to decompose constituents of an exhaust produced by an engine having a turbocharger including a turbine and a compressor coupled thereto, includes: a selective catalytic reduction system; an injector fluidly coupled to the selective catalytic reduction system and structured to selectively insert a reductant into the selective catalytic reduction system; an intake conduit fluidly coupled to a compressor outlet of the compressor and structured to deliver a compressed air from the compressor to the engine; and an air delivery line fluidly coupling the intake conduit to the injector, the air delivery line structured to deliver a portion of the compressed air to the injector.
    Type: Application
    Filed: December 5, 2018
    Publication date: June 27, 2019
    Applicant: Cummins Emission Solutions Inc.
    Inventors: Shireen Faizi, Tyler Kent Lorenz, Nicholas Blodgett, Colin L. Norris, Stephen M. Holl, Taren DeHart
  • Publication number: 20190178134
    Abstract: An aftertreatment system comprises an aftertreatment component structured to decompose constituents of an exhaust gas produced by an engine. A reductant insertion assembly is fluidly coupled to the aftertreatment component and configured to insert a reductant therein. A controller is operatively coupled to the reductant insertion assembly and configured to instruct the reductant insertion assembly to insert the reductant into the aftertreatment component for a first insertion time between first time intervals. The controller determines an operating condition of the engine, and determines if the operating condition satisfies a predetermined condition. In response to the predetermined condition being satisfied, the controller instructs the reductant insertion assembly to insert the reductant into the aftertreatment component for a second insertion time between second time intervals. The second insertion time is longer than the first insertion time.
    Type: Application
    Filed: February 18, 2019
    Publication date: June 13, 2019
    Applicant: Cummins Emission Solutions Inc.
    Inventors: Santosh Kumar Ratan, Bryce R. Larson, Jinqian Gong, Abhijeet Singh Chauhan, Arun Kumar Dasari, Aditi Vedantam, Frederick V. Holt, III
  • Publication number: 20190178130
    Abstract: A dosing module includes an inlet manifold, an outlet manifold, a first branch, and a second branch. The inlet manifold is configured to selectively receive reductant from a pump. The outlet manifold is configured to selectively provide the reductant to a nozzle. The first branch is coupled to the inlet manifold and the outlet manifold. The first branch is configured to selectively provide the reductant from the inlet manifold to the outlet manifold. The first branch includes a first flow restrictor configured to restrict the reductant as the reductant is provided to the outlet manifold. The second branch is coupled to the inlet manifold and the outlet manifold. The second branch is configured to selectively provide the reductant from the inlet manifold to the outlet manifold separately from the first branch. The second branch includes a second flow restrictor that is configured to restrict the reductant.
    Type: Application
    Filed: December 11, 2017
    Publication date: June 13, 2019
    Applicant: Cummins Emission Solutions Inc.
    Inventors: Taren DeHart, Vaibhav J. Lawand, Stephen M. Holl, Paul Douglas Free, Nassim Khaled, Colin L. Norris
  • Publication number: 20190178132
    Abstract: An assembly for reductant dosing error correction in an exhaust aftertreatment system includes an injector comprising a reductant insertion conduit; a pump configured to advance a quantity of dosed fluid reductant from a reductant source; a reductant source outlet defined by the reductant source and configured to release the quantity of dosed fluid reductant into the reductant insertion conduit; a pressurized reductant receiving chamber defining a pressurized reductant receiver inlet; a reductant insertion pressure sensor; and a doser comprising a controller. The controller of the doser is configured to, based on a first actual pressure of the reductant, calculate a second target flow rate for a second injection event subsequent to a first injection event and control a quantity of dosed fluid reductant released during the second injection event based on the second target flow rate.
    Type: Application
    Filed: December 12, 2017
    Publication date: June 13, 2019
    Applicant: Cummins Emission Solutions Inc.
    Inventors: Vikram Sundararajan, Joe V. Hill, Kern Lik Tan
  • Patent number: D855090
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: July 30, 2019
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Carl A. McDonald, Arvind V. Harinath, John G. Buechler, Ryan M. Johnson, Randolph G. Zoran