Patents Assigned to Cummins Emission Solutions Inc.
  • Patent number: 11608767
    Abstract: A sensor table mounting system includes an insulating blanket assembly and a senor table. The insulating blanket assembly is configured to surround an external housing surface of an exhaust aftertreatment component housing. The insulating blanket assembly includes an inner blanket surface, an outer blanket surface, and a first restraint. The outer blanket surface is opposite the inner blanket surface. The first restraint includes a first restraint first end that is fixed to the outer blanket surface. The sensor table includes a platform, a first standoff, a second standoff, a first footing, and a second footing. The first footing is offset from the platform by the first standoff and configured to be coupled to the first restraint. The second footing is offset from the platform by the second standoff and configured to be coupled to the first restraint.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: March 21, 2023
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Brandon Scott Degner, John Ringstad, James Klingbeil
  • Patent number: 11591949
    Abstract: An aftertreatment system for treating constituents of an exhaust gas produced by an engine includes a heater configured to selectively heat the exhaust gas entering the aftertreatment system. An aftertreatment component is disposed downstream of the heater. A gas sensor is disposed downstream of the heater and upstream of the aftertreatment component. The gas sensor comprises a sensing element, and a heating element configured to selectively heat the sensing element to an operating temperature of the sensing element.
    Type: Grant
    Filed: February 28, 2022
    Date of Patent: February 28, 2023
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Colin L. Norris, Andrew W. Osburn, Ryan M. Johnson, Todd A. Corbet, Kyle Robert Fath, Lindsey R. Henry, Baseer Faalzada
  • Patent number: 11585253
    Abstract: A liquid reductant injector nozzle includes a first portion defining a hollow cylindrical static chamber, in fluid communication with second portion defining a hollow frustoconical converging section, which is in turn in fluid communication with a sharp edged type discharge orifice. The hollow cylindrical static chamber is in reductant receiving communication with a reductant source, and has a first and second circular opening having equal diameters. The second circular opening is downstream of the first circular opening. The hollow frustoconical converging section is in reductant receiving communication with the hollow cylindrical static chamber via the second circular opening. Reductant received from the reductant source is discharged through the discharge orifice. A sidewall of the hollow cylindrical static chamber and a frustum side of the frustoconical converging section define an angle of convergence of the liquid reductant injector nozzle relative to a plane of the second circular opening.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: February 21, 2023
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Z. Gerald Liu, Achuth Munnannur, Niklas Schmidt
  • Patent number: 11578633
    Abstract: An aftertreatment system includes an exhaust reductant tank configured to store an exhaust reductant. A filter is fluidically coupled to the exhaust reductant tank. The aftertreatment system includes a hydrocarbon detection device configured to indicate the presence of a hydrocarbon in the exhaust reductant. A catalyst is included in the system and configured to treat the exhaust reductant flowing through the system. The hydrocarbon detection device can include a hydrophobic paper, and can be disposed in the filter.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: February 14, 2023
    Assignee: CUMMINS EMISSION SOLUTIONS, INC.
    Inventor: Kevin Gudorf
  • Patent number: 11578634
    Abstract: An aftertreatment system configured to reduce constituents of an exhaust gas produced by an engine comprises an aftertreatment component and an optical assembly. The optical assembly comprises an optical emitter configured to emit light onto a face of the aftertreatment component, and an optical detector configured to detect light reflected from the face of the aftertreatment component. A controller is configured to determine at least one of an amount of NOx gases or an amount of ammonia on the face of the aftertreatment component based on an optical parameter of the detected light that has reflected from the face of the aftertreatment component.
    Type: Grant
    Filed: May 13, 2022
    Date of Patent: February 14, 2023
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Nathan A. Ottinger, Z. Gerald Liu, Yuanzhou Xi
  • Patent number: 11572822
    Abstract: A water drainage assembly for an aftertreatment system comprises a first tube structured to be coupled to an outlet conduit of the aftertreatment system and has a first cross-sectional width. A second tube is disposed radially around the first tube. A first end of the second tube is coupled to a radially outer surface of the first tube. A portion of the second tube has a second cross-sectional width larger than the first cross-sectional width such that a volume is defined between the first and second tubes. A drain port is defined in the second tube proximate to the first end. The assembly is structured such that water flowing into the water drainage assembly flows into the volume defined between the first tube and the second tube and is expelled therefrom via the drain port.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: February 7, 2023
    Assignee: CUMMINS EMISSION SOLUTIONS INC.
    Inventors: Shaila Sangmeshwar Kalyanshetti, Jeffrey T. Sedlacek, Collin P. Veele, Douglas Robert Farnsworth
  • Patent number: 11566552
    Abstract: An exhaust aftertreatment system includes a catalyst, an exhaust conduit system, a first sensor, a second sensor, a reductant pump, a dosing module, and a reductant delivery system controller. The exhaust conduit system is coupled to the catalyst. The first sensor is coupled to the exhaust conduit system upstream of the catalyst and configured to obtain a current first measurement upstream of the catalyst. The second sensor is coupled to the exhaust conduit system downstream of the catalyst and configured to obtain a current second measurement downstream of the catalyst. The reductant pump is configured to draw reductant from a reductant source. The dosing module is fluidly coupled to the reductant pump and configured to selectively provide the reductant from the reductant pump into the exhaust conduit system upstream of the catalyst. The reductant delivery system controller is communicable with the first sensor, the second sensor, the reductant pump, and the dosing module.
    Type: Grant
    Filed: May 16, 2022
    Date of Patent: January 31, 2023
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Jinqian Gong, Arun Kumar Dasari, Gautam Sharma
  • Patent number: 11560821
    Abstract: A decomposition chamber for an aftertreatment system includes: a body comprising: an inlet configured to receive exhaust gas, an outlet configured to expel the exhaust gas, a thermal management chamber in fluid communication with the inlet, the thermal management chamber configured to receive an exhaust gas first portion from the inlet, an exhaust assist chamber in fluid communication with the inlet, the exhaust assist chamber configured to receive an exhaust gas second portion from the inlet, and a main flow chamber in fluid communication with the inlet, the main flow chamber configured to receive an exhaust gas third portion from the inlet, receive the exhaust gas first portion from the thermal management chamber, and receive the exhaust gas second portion from the exhaust assist chamber.
    Type: Grant
    Filed: March 7, 2022
    Date of Patent: January 24, 2023
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Samuel Johnson, Ryan M. Johnson, Kartiki Jagtap, Enoch Nanduru, Mahendra Mittapalli, Udit Bhaveshkumar Shah, Suraj D. Khalate, Pradnya Chandrakant Joshi, Vinay Kumar Joshi, Vaidyanadan Sundaram
  • Publication number: 20230016427
    Abstract: A mixing assembly for an exhaust system can include an outer body, a front plate, a back plate, a middle member, and an inner member. The outer body defines an interior volume and has a center axis. The front plate defines an upstream portion of the interior volume and the back plate defines a downstream portion of the interior volume. The middle member is positioned transverse to the center axis and defines a volume. The inner member is positioned coaxially with the middle member inside the middle member. The front plate includes inlets configured to direct exhaust to (i) a first flow path into an interior of the inner member, (ii) a second flow path into the volume of the middle member between a sidewall of the middle member and a sidewall of the inner member, and (iii) a third flow path into the interior volume of the outer body.
    Type: Application
    Filed: September 19, 2022
    Publication date: January 19, 2023
    Applicant: Cummins Emission Solutions Inc.
    Inventors: Matthew K. Volmerding, Ryan M. Johnson, Jim L. Alonzo, Samuel Johnson, Apoorv Kalyankar, Pranjal Naik, Kartiki Jagtap, Mahendra Mittapalli
  • Publication number: 20230009619
    Abstract: An insulated exhaust gas conduit system includes a first exhaust gas conduit, a second exhaust gas conduit, a first insulation sleeve, and a second insulation sleeve. The first exhaust gas conduit has a first exhaust gas conduit end portion. The second exhaust gas conduit has a second exhaust gas conduit end portion that is configured to engage with the first exhaust gas conduit end portion. The first insulation sleeve comprising includes a first insulation sleeve and a first insulation sleeve heat shield. The first insulation sleeve insulation layer is disposed around the first exhaust gas conduit. The first insulation sleeve heat shield is disposed around the first insulation sleeve insulation layer. The first insulation sleeve extends beyond the first exhaust gas conduit end portion. The second insulation sleeve includes a second insulation sleeve insulation layer and a second insulation sleeve heat shield.
    Type: Application
    Filed: December 17, 2019
    Publication date: January 12, 2023
    Applicant: Cummins Emission Solutions Inc.
    Inventors: Jacob D. Canik, Andrew Komisarek, Corey Verseman
  • Publication number: 20230003159
    Abstract: A reductant delivery system includes an inlet body, an outlet body, and an outer transfer tube. The inlet body includes an inlet body coupler, an inlet body outer transfer shell, and an inlet body inner shell. The inlet body coupler surrounds an inlet body inlet that is configured to receive exhaust gas. The inlet body outer transfer shell is coupled to the inlet body coupler. The inlet body outer transfer shell includes an inlet body outer transfer shell inner surface and an inlet body outer transfer shell outlet. The inlet body outer transfer shell outlet extends through the inlet body outer transfer shell inner surface. The inlet body inner shell includes an inlet body inner shell first flange, an inlet body inner shell second flange, and an inlet body inner shell wall. The inlet body inner shell first flange is coupled to the inlet body outer transfer shell inner surface.
    Type: Application
    Filed: December 3, 2019
    Publication date: January 5, 2023
    Applicant: Cummins Emission Solutions Inc.
    Inventors: Mahendra Mittapalli, Enoch Nanduru, Samuel Johnson, Ryan M. Johnson, Kartiki Jagtap, Vinay Kumar Joshi, Aishwarya Pravin Joshi
  • Publication number: 20230003158
    Abstract: A decomposition chamber for an exhaust aftertreatment system includes an inlet conduit centered on an inlet conduit axis and configured to receive exhaust, a decomposition conduit coupled to the inlet conduit, an endcap coupled to the decomposition conduit, and an injector coupled to the endcap and configured to provide reductant into the decomposition conduit along an injection axis. The decomposition chamber includes a guide swirl mixer coupled to at least one of the inlet conduit or the endcap. The guide swirl mixer includes a first portion disposed within the inlet conduit, and a second portion disposed within the decomposition conduit such that the inlet conduit axis extends through the second portion. The second portion extends at least partially around the injection axis.
    Type: Application
    Filed: June 28, 2022
    Publication date: January 5, 2023
    Applicant: Cummins Emission Solutions Inc.
    Inventors: Gaurav Hemant Pandit, Allick Mounir Olive, Sagar Maruti Jarali, Narenthiran Thangamuthu, Ramesh Ramavath, Alex Harrington, Samuel Johnson, Sriram Narayanasamy, Enoch Nanduru, George Eugene Mavroudis
  • Publication number: 20230003152
    Abstract: A controller for controlling operation of an aftertreatment system that is configured to treat constituents of an exhaust gas produced by an engine, the aftertreatment system including a selective catalytic reduction (SCR) catalyst, the controller configured to: generate a short-term cumulative degradation estimate of the SCR catalyst corresponding to reversible degradation of the SCR catalyst due to sulfur and/or hydrocarbons based on a SCR catalyst temperature parameter; generate a long-term cumulative degradation estimate of the SCR catalyst corresponding to thermal aging of the SCR catalyst based on the SCR catalyst temperature parameter; generate a combined degradation estimate of the SCR catalyst based on the short-term cumulative degradation estimate and the long-term cumulative degradation estimate; and adjust an amount of reductant and/or an amount of hydrocarbons inserted into the aftertreatment system based on the combined degradation estimate of the SCR catalyst.
    Type: Application
    Filed: September 9, 2022
    Publication date: January 5, 2023
    Applicant: Cummins Emission Solutions Inc.
    Inventors: James C. Clerc, Bradley V. Jones, Marc Alexander Greca, Santosh Kumar Ratan, Rohil Daya, Karthik Venkata Rama Krishna Dadi, Jinqian Gong, Bryon D. Staebler, Todd A. Corbet, Alain Ngoy Tschimwang, Premjee Sasidharan, David C. Hall
  • Publication number: 20230003151
    Abstract: A controller for controlling regeneration of a selective catalytic reduction (SCR) catalyst of an aftertreatment system is configured to cause increase in a SCR catalyst temperature of the SCR catalyst to a first regeneration temperature, the first regeneration temperature being lower than a high regeneration temperature that is equal to or greater than 500 degrees Celsius. The controller is configured to determine an amount of ammonia slip downstream of the SCR catalyst; and cause an increase in the SCR catalyst temperature to a second regeneration temperature greater than the first regeneration temperature but lower than the high regeneration temperature based on the determined amount of ammonia slip.
    Type: Application
    Filed: November 24, 2020
    Publication date: January 5, 2023
    Applicant: CUMMINS EMISSION SOLUTIONS INC.
    Inventors: Jinqian Gong, Anurag Kumra
  • Patent number: 11542847
    Abstract: A multi-stage mixer includes a multi-stage mixer inlet, a multi-stage mixer outlet, a first flow device, and a second flow device. The multi-stage mixer inlet is configured to receive exhaust gas. The multi-stage mixer outlet is configured to provide the exhaust gas to a catalyst. The first flow device is configured to receive the exhaust gas from the multi-stage mixer inlet and to receive reductant such that the reductant is partially mixed with the exhaust gas within the first flow device. The first flow device includes a plurality of main vanes and a plurality of main vane apertures. The plurality of main vane apertures is interspaced between the plurality of main vanes. The plurality of main vane apertures is configured to receive the exhaust gas and to cooperate with the plurality of main vanes to provide the exhaust gas from the first flow device with a swirl flow.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: January 3, 2023
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Z. Gerald Liu, Apoorv Kalyankar, Achuth Munnannur, Niklas M. Schmidt, Roy W. Detra, Mihai Chiruta
  • Publication number: 20220412240
    Abstract: A system for controlling reductant spray momentum for a target spray distribution includes an exhaust system having an exhaust conduit with exhaust flowing therethrough, a reductant injection system for injecting reductant into the exhaust flowing through the exhaust system based on one or more injection parameters, a reductant supply system for supplying reductant to the reductant injection system based on one or more supply parameters, and a controller. The controller is configured to access current vehicle, engine, exhaust, or reductant condition parameters, determine one or more control parameters based on a control model and the accessed current vehicle, engine, exhaust, or reductant condition parameters, and modify a value of the one or more injection parameters or the one or more supply parameters to control the reductant spray.
    Type: Application
    Filed: August 29, 2022
    Publication date: December 29, 2022
    Applicant: CUMMINS EMISSION SOLUTIONS INC.
    Inventors: Samuel Johnson, Nassim Khaled, Patrick C. Hudson
  • Publication number: 20220412239
    Abstract: A control module for an aftertreatment system that includes a selective catalytic reduction (SCR) catalyst and an oxidation catalyst, comprises a controller configured to be operatively coupled to the aftertreatment system. The controller is configured to determine an actual SCR catalytic conversion efficiency of the SCR catalyst. The controller determines an estimated SCR catalytic conversion efficiency based on a test sulfur concentration selected by the controller. In response to the estimated SCR catalytic conversion efficiency being within a predefined range, the controller sets the test sulfur concentration as a determined sulfur concentration in a fuel provided to the engine. The controller generates a sulfur concentration signal indicating the determined sulfur.
    Type: Application
    Filed: November 22, 2019
    Publication date: December 29, 2022
    Applicant: CUMMINS EMISSION SOLUTIONS INC.
    Inventors: Jinqian Gong, Durvesh Ramesh Pathak, Changsheng C. Su, Gautam Sharma, Yuanzhou Xi
  • Patent number: 11534718
    Abstract: A polygonal substrate assembly includes a polygonal substrate housing, a substrate, and a compressible mat. The compressible mat is positioned about the substrate and the substrate is press-fit within the polygonal substrate housing with the compressible mat. The polygonal substrate housing may include a sidewall having a concave portion. The polygonal substrate housing may include a substrate installation portion that flares out from a main sidewall at an end of the polygonal substrate housing. The polygonal substrate housing may be formed from a plurality of substrate housing components welded together. The polygonal substrate housing can include one or more stiffening ribs. Several polygonal substrate assemblies may be combined and coupled together to form an array in various geometric configurations.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: December 27, 2022
    Assignee: Cummins Emission Solutions Inc.
    Inventors: George E. Mavroudis, Taren Dehart, Daniel W. Woods, Ryan M. Johnson, Colin L. Norris, Randolph G. Zoran
  • Patent number: 11525380
    Abstract: An aftertreatment system (100) includes a decomposition chamber (108), a reductant pump (120), a first dosing module (110), a second dosing module (112), and a controller (133). The first dosing module (110) is coupled to the decomposition chamber (108) and configured to receive reductant from the reductant pump (120). The second dosing module (112) is coupled to the decomposition chamber (108) and configured to receive reductant from the reductant pump (120) independent of the first dosing module (110). The controller (133) is communicatively coupled to the first dosing module (110) and the second dosing module (112). The controller (133) is configured to independently control a first volumetric flow rate of reductant provided from the first dosing module (110) into the decomposition chamber (108) and a second volumetric flow rate of reductant provided from the second dosing module (112) into the decomposition chamber (108).
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: December 13, 2022
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Changsheng C. Su, Liqiang Bian, Lei Jiang, Yi Xie
  • Publication number: 20220389854
    Abstract: An outlet assembly for an aftertreatment system comprises an outlet conduit configured to receive an exhaust gas from the aftertreatment system. The outlet conduit defines a first aperture through a sidewall thereof. An outlet passage is disposed within the outlet conduit. The outlet passage comprises a first end facing an upstream side of the outlet conduit and a second end located downstream from the first end. The second end is fluidly coupled to the first aperture. A hole is defined through an outlet passage sidewall at a radial location that is proximate to the sidewall of the outlet conduit. The hole is configured to allow a sensor to be inserted therethrough into a flow path defined by the outlet passage. The outlet passage is configured to receive a portion of the exhaust gas from the outlet conduit such that the sensor is exposed to the portion of the exhaust gas.
    Type: Application
    Filed: November 7, 2019
    Publication date: December 8, 2022
    Applicant: Cummins Emission Solutions Inc.
    Inventor: Advait Sunil Vaishampayan