Abstract: An implantable medical device includes a case having a conductive housing defining an opening. A dielectric material is coupled to the conductive housing to hermetically seal the opening. An antenna is within the case under the dielectric material. A header block is coupled to the case over the dielectric material.
Type:
Grant
Filed:
December 16, 2011
Date of Patent:
February 23, 2016
Assignee:
CYBERONICS, INC.
Inventors:
Himanshu Joshi, Eric Y. Chow, Clint Warren
Abstract: An implantable medical device includes a housing. An opening is present in the housing. The implantable medical device includes communication circuitry in the housing. The implantable medical device includes a cover coupled to edges of the housing defining the opening to substantially close the opening. The implantable medical device also includes an antenna coupled to the cover. The antenna is electrically coupled to the communication circuitry.
Abstract: An implantable medical device having a concave ceramic housing component; a concave metal housing component attached to the ceramic housing component to form a hermetically sealed enclosure; and an electronic trans-housing magnetic flux component disposed within the enclosure. Another aspect of the invention provides an implantable medical device having a ceramic housing component; a metal housing component; a circumferential sealing member attached to a periphery of the ceramic housing component and to a periphery of the metal housing component to form a hermetically sealed enclosure; and an electronic trans-housing magnetic flux component disposed within the enclosure.
Type:
Grant
Filed:
December 23, 2008
Date of Patent:
February 16, 2016
Assignee:
CYBERONICS, INC.
Inventors:
David Brown, Christopher Genau, Kent W. Leyde, Shan Gaw, Jeffrey Stewart
Abstract: An implantable medical device may include a case which houses components of the implantable medical device. The implantable medical device may include an inductive coil coupled to a rechargeable battery. The inductive coil may be operative to inductively couple to an external coil and to transfer energy from the external coil to the rechargeable battery to recharge the rechargeable battery. The implantable medical device may include a cutout formed in the case of the implantable medical device and filled with a dielectric material. The cutout may be operative to reduce eddy currents in the case during recharge of the rechargeable battery. The implantable medical device may include a slot antenna disposed within the case. The slot antenna may be operative to communicate with an external device through the cutout in the case.
Type:
Grant
Filed:
April 29, 2011
Date of Patent:
February 16, 2016
Assignee:
CYBERONICS, INC.
Inventors:
Himanshu Joshi, David L. Thompson, Jared Brandon Floyd, Eric Y. Chow, Jonathan D. Rowell
Abstract: Methods, systems, and apparatus for detecting the seizure in a patient using a medical device. The determination is performed by collecting cardiac data determining valid heart beats suitable for seizure detection from the cardiac data; calculating heart rate data of interest from the valid heart beats; and identifying a seizure event from the heart rate data. The medical device may then take a responsive action, such as warning, logging the time of the seizure, computing and storing one or more seizure severity indices, and/or treating the seizure.
Abstract: This disclosure relates to devices, systems, and methods for validating locational data for a monitoring device. The external monitoring device located on a patient may include one or more processors, one or more memory devices, one or more power devices, one or more heart rate detection devices, and one or more heart sound detection devices. Further, the method may include determining a plurality of status of an external monitoring device located on a patient via one or more processors based on obtained heart rate data and obtained heart sound data. The external monitoring device state may be generated via a validation module based on the heart rate data and the heart sound data.
Abstract: A system and method for estimating the longevity of an implantable medical device (IMD). In one embodiment of a method for estimating a life of a power source of an implantable medical device, a first life estimate of the power source is determined based on a first open-loop value corresponding to an open-loop parameter for open-loop therapy delivery, a first closed loop value corresponding to a closed-loop parameter for closed-loop therapy delivery, and prior usage data corresponding to prior therapy delivery. The first life estimate of the power source is displayed. The first life estimate displayed includes a first open-loop portion associated with open-loop therapy delivery and a first closed-loop portion associated with closed-loop therapy delivery.
Abstract: An implantable medical device includes a housing. An opening is present in the housing. The implantable medical device includes an antenna in the housing, where the antenna is located below the opening. The implantable medical device includes a cover coupled to edges of the housing defining the opening to close the opening. The cover enables passage of radio frequency signals at one or more communication frequencies to and from the antenna. The implantable medical device also includes an antenna shield positioned above the cover. The antenna shield reduces passage of radio frequency signals to and from at least a portion of the antenna during use.
Abstract: A seizure detection device includes a coordinate data interface configured to receive coordinate data for a human, a memory to store coordinate data for a defined location of the human, and a seizure detector configured to identify a seizure event responsive to the coordinate data.
Abstract: An implantable medical device charging apparatus includes a charging circuit. The charging circuit includes a series resonator responsive to a signal applied to the charging circuit. During operation, the series resonator inductively couples to a secondary coil within an implantable medical device to transfer energy to the secondary coil. The charging circuit also includes a parallel resonator coupled to the series resonator. The parallel resonator filters a first component of the signal from propagating to the series resonator.
Abstract: Devices and methods for improving the coupling between the soft palate and the genioglossus. This may be accomplished, for example, but shortening or stiffening the palatoglossal arch. Improved coupling between the soft palate and the genioglossus may be beneficial to a patient suffering from obstructive sleep apnea (OSA) as a stand-alone procedure, or in combination procedures and devices that cause anterior displacement of the tongue such as hypoglossal nerve stimulation, genioglossus advancement surgery, mandibular advancement surgery, mandibular advancement (oral) appliances, etc.
Type:
Grant
Filed:
October 2, 2012
Date of Patent:
December 8, 2015
Assignee:
CYBERONICS, INC.
Inventors:
Stephen Bolea, Wondimeneh Tesfayesus, John Beck, Thomas Hoegh, Robert Atkinson, Sidney Hauschild
Abstract: A system and method for estimating the longevity of an implantable medical device (IMD). In one embodiment of a method for estimating a life of a power source of an implantable medical device, a first life estimate of the power source is determined based on a first open-loop value corresponding to an open-loop parameter for open-loop therapy delivery, a first closed loop value corresponding to a closed-loop parameter for closed-loop therapy delivery, and prior usage data corresponding to prior therapy delivery. The first life estimate of the power source is displayed. The first life estimate displayed includes a first open-loop portion associated with open-loop therapy delivery and a first closed-loop portion associated with closed-loop therapy delivery.
Abstract: A method of treating a patient, comprising: sensing a biological parameter indicative of respiration; analyzing the biological parameter to identify a respiratory cycle; identifying an inspiratory phase of the respiratory cycle; and delivering stimulation to a hypoglossal nerve of the patient, wherein stimulation is delivered if a duration of the inspiratory phase of the respiratory cycle is greater than a predetermined portion of a duration of the entire respiratory cycle.
Abstract: A method includes receiving heartbeat data of a patient and receiving activity data of the patient. The activity data includes one or more activity values that are related to an activity level of the patient and that are measured independently of the heartbeat data. The method further includes determining a value of a weighting factor based on the activity data. The method also includes determining modified heartbeat data by applying the weighting factor to at least a portion of the heartbeat data. The method also includes detecting a seizure event based on the modified heartbeat data.
Abstract: A method includes determining sleep cycle information related to a sleep cycle of a patient based on body parameter data. The method also includes adjusting a cranial nerve stimulation parameter based on the sleep cycle information. The method further includes applying a cranial nerve stimulation therapy to treat depression based on the adjusted cranial nerve stimulation parameter.
Abstract: A system and method for estimating the longevity of an implantable medical device (IMD). In one embodiment of a method for estimating a life of a power source of an implantable medical device, a first life estimate of the power source is determined based on a first open-loop value corresponding to an open-loop parameter for open-loop therapy delivery, a first closed loop value corresponding to a closed-loop parameter for closed-loop therapy delivery, and prior usage data corresponding to prior therapy delivery. The first life estimate of the power source is displayed. The first life estimate displayed includes a first open-loop portion associated with open-loop therapy delivery and a first closed-loop portion associated with closed-loop therapy delivery.
Abstract: A method includes determining sleep cycle information related to a sleep cycle of a patient based on body parameter data. The method also includes adjusting a cranial nerve stimulation parameter based on the sleep cycle information.
Abstract: A neurological control system for modulating activity of any component or structure comprising the entirety or portion of the nervous system, or any structure interfaced thereto, generally referred to herein as a “nervous system component.” The neurological control system generates neural modulation signals delivered to a nervous system component through one or more neuromodulators to control neurological state and prevent neurological signs and symptoms. Such treatment parameters may be derived from a neural response to previously delivered neural modulation signals sensed by one or more sensors, each configured to sense a particular characteristic indicative of a neurological or psychiatric condition.
Abstract: Devices and methods for treating obstructive sleep apnea by first performing an assessment of the patient that involves observing the patient's upper airway during a tongue protrusion maneuver. The assessment may, for example, be done using endoscopy to observe the upper airway while the patient is awake in the supine position. An adequate response of the upper airway during the tongue protrusion maneuver is indicative of likely therapeutic success with hypoglossal nerve stimulation, and may be used for making clinical decisions. The principles of the present invention may be applied to other therapeutic interventions for OSA involving the upper airway.
Type:
Grant
Filed:
September 2, 2014
Date of Patent:
August 25, 2015
Assignee:
CYBERONICS, INC.
Inventors:
Wondimeneh Tesfayesus, Stephen L. Bolea, Peter R. Eastwood, David R. Hillman
Abstract: An implantable device (11) for evaluating autonomic cardiovascular drive in a patient (10) suffering from chronic cardiac dysfunction is provided. A stimulation therapy lead (13) includes helical electrodes (14) configured to conform to an outer diameter of a cervical vagus nerve sheath, and a set of connector pins (28) electrically connected to the helical electrodes (14). A neurostimulator (12) includes an electrical receptacle (25) into which the connector pins (28) are securely and electrically coupled. The neurostimulator (12) also includes a pulse generator configured to therapeutically stimulate the vagus nerve through the helical electrodes (14) in alternating cycles of stimuli application and stimuli inhibition (90) that are tuned to both efferently activate the heart's intrinsic nervous system and afferently activate the patient's central reflexes by triggering bi-directional action potentials. The neurostimulator (12) includes a recordable memory (29) storing a baseline heart rate.
Type:
Grant
Filed:
November 13, 2014
Date of Patent:
August 25, 2015
Assignee:
CYBERONICS, INC.
Inventors:
Imad Libbus, Badri Amurthur, Bruce H. KenKnight