Patents Assigned to Danfoss A/S
-
Publication number: 20200191460Abstract: A method for controlling suction pressure in a vapour compression system (1) comprising one or more cooling entities (5) is disclosed. For each cooling entity (5), a maximum required suction pressure and/or a required change in suction pressure for maintaining a target temperature in the refrigerated volume is obtained. A most loaded cooling entity (5) among the one or more cooling entities (5) is identified, based on the maximum required suction pressures and/or the required changes in suction pressure. The suction pressure of the vapour compression system (1) is controlled in accordance with the maximum required suction pressure and/or required change in suction pressure for the identified most loaded cooling entity (5).Type: ApplicationFiled: April 25, 2018Publication date: June 18, 2020Applicant: Danfoss A/SInventors: Lars Finn Sloth LARSEN, Jan PRINS, Torben GREEN
-
Patent number: 10663077Abstract: A solenoid valve (1) is described comprising a first port (2), a second port (3), a valve element (4) and a valve seat (5) arranged between said first port (2) and said second port (3), a coil (12) and a yoke arrangement (14-16), said coil (12) being magnetically linked to said yoke arrangement (14-16), said yoke arrangement (14-16) having a movable armature (16). In such a solenoid valve the generation of noise should be kept low.Type: GrantFiled: May 28, 2015Date of Patent: May 26, 2020Assignee: Danfoss A/SInventor: Michael Birkelund
-
Patent number: 10663200Abstract: A method for controlling a supply of refrigerant to an evaporator of a vapour compression system, such as a refrigeration system, an air condition system or a heat pump. During normal operation, the opening degree of the expansion valve is controlled on the basis of an air temperature, Tair, of air flowing across the evaporator and/or on the basis of superheat of refrigerant leaving the evaporator. If at least one sensor used for obtaining Tair or the superheat is malfunctioning, operation of the vapour compression system is switched to a contingency mode. A reference temperature, Tout, ref, is calculated, based on previously obtained values of a temperature, Tout, of refrigerant leaving the evaporator, during a predefined previous time interval, and subsequently the opening degree of the expansion valve is controlled on the basis of the obtained temperature, Tout, in order to reach the calculated reference temperature, Tout, ref.Type: GrantFiled: January 10, 2017Date of Patent: May 26, 2020Assignee: DANFOSS A/SInventor: Roozbeh Izadi-Zamanabadi
-
Patent number: 10619645Abstract: The centrifugal compressor includes an hermetic housing; a drive shaft (4); a first and a second compression stage (8, 9) configured to compress a refrigerant, the first and second compression stages (8, 9) respectively including a first and a second impeller (18, 19), the first and second impellers (18, 19) being connected to the drive shaft (4) and being arranged in a back-to-back configuration; a radial annular groove (27) formed between the back-sides (25, 26) of the first and second impellers (18, 19); an inter-stage sealing arrangement (35) provided between the first and second compressor stages (8, 9) and in the radial annular groove (27); a radial bearing arrangement configured to rotatably support the drive shaft (4); and a thrust bearing arrangement configured to limit an axial movement of the drive shaft (4) during operation.Type: GrantFiled: June 20, 2016Date of Patent: April 14, 2020Assignee: Danfoss A/SInventors: Arnaud Daussin, Patrice Bonnefoi, Nicolas Nouyrigat
-
Patent number: 10620057Abstract: The present invention relates to a tubular wire shielding (9) for an exhaust gas temperature sensor arrangement (1), the tubular wire shielding (9) comprising a first shielding tube (13) comprising one or more through channels for accommodating one or more wires (6a, 6b, 8a, 8b, 11a, 11b) and/or for accommodating one or more temperature measurement sensors (7), the tubular wire shielding (9) furthermore comprising a second shielding tube (14) radially surrounding the first shielding tube (14). It is an object of the invention to provide a tubular wire shielding (9) and an exhaust temperature sensor arrangement (1) which are of good mechanical stability. The object is solved in that the tubular wire shielding (9) comprises a first tube adhesive layer (15) arranged interposed between the first shielding tube (13) and the second shielding tube (14), the first tube adhesive layer (15) fixing the first shielding tube to the second shielding tube (14).Type: GrantFiled: September 6, 2017Date of Patent: April 14, 2020Assignee: DANFOSS A/SInventor: Tom Christensen
-
Patent number: 10620071Abstract: The invention relates to a pressure sensor (1) comprising a pressure sensing arrangement (8) and a housing. The housing comprises an intermediate member (2) and a bottom part (3), wherein the intermediate member (2) comprises an aperture (4). The aperture (4) extends through the intermediate member (2), wherein the aperture (4) is on a first end (5) covered by a diaphragm (6) connected to the intermediate member (2). A second end (7) of the aperture (4) is covered by the bottom part (3) comprising the pressure sensing arrangement (8). Task of the invention is to provide a pressure sensor which allows a simplified and cost effective assembly and mounting. The task is solved in that the intermediate member (2) comprises a gripping surface (16) on an outer surface of the housing.Type: GrantFiled: June 20, 2017Date of Patent: April 14, 2020Assignee: DANFOSS A/SInventors: Hans-Henning Hansen, Ingvar Smari Kampp, Lars Nørgaard, Veenith Shetty, Klaus Tonnesen
-
Patent number: 10612819Abstract: A pulsation damper (1) comprising a first tube (4) and a second tube (5), e.g. arranged concentrically with respect to each other, the first tube (4) being arranged inside the second tube (5). The second tube (5) has a closed end, and the first tube (4) has a second end (7) arranged at a distance from the closed end (8) of the second tube (5). The first tube (4) is fluidly connected to the second tube (5) via the second end (7). The pulsation damper is capable of damping pressure pulses within a broad frequency range. Furthermore a vapour compression system (14) having a pulsation damper (1) arranged in an economizer line (20).Type: GrantFiled: May 27, 2015Date of Patent: April 7, 2020Assignee: DANFOSS A/SInventors: Carsten Mølhede Thomsen, Klaus Halldorsson, Bjarke Skovgård Dam
-
Patent number: 10598414Abstract: A method for controlling a variable capacity ejector unit (7) arranged in a refrigeration system (1) is disclosed. An ejector control signal for the ejector unit (7) is generated, based on an obtained temperature and an obtained pressure of refrigerant leaving a heat rejecting heat exchanger (3), or on the basis of a high pressure valve control signal for controlling an opening degree of a high pressure valve (6) arranged fluidly in parallel with the ejector unit (7). The ejector control signal indicates whether the capacity of the ejector unit (7) should be increased, decreased or maintained. The capacity of the ejector unit (7) is controlled in accordance with the generated ejector control signal. The power consumption of the refrigeration system (1) is reduced, while the pressure of the refrigerant leaving the heat rejecting heat exchanger (3) is maintained at an acceptable level.Type: GrantFiled: June 23, 2015Date of Patent: March 24, 2020Assignee: DANFOSS A/SInventors: Kenneth Bank Madsen, Jan Prins, Kristian Fredslund
-
Patent number: 10590920Abstract: A pump device (1) is provided comprising: a shaft (2), rotor means (3a, 3b) fixed to said shaft (2) in rotational direction, said rotor means (3a, 3b) having pressure chambers (5a, 5b) the volume of which varying during a rotation of said rotor means (3a, 3b), port plate means (15a, 15b) having a through going opening (16a, 16b) for each of said pressure chambers (5a, 5b) and being connected to said rotor means (3a, 3b) in rotational direction, and valve plate means (17a, 17b) cooperating with said port plate means (15a, 15b). It is intended to pressurize a high volume of fluid, in particular water, within a limited space.Type: GrantFiled: November 3, 2015Date of Patent: March 17, 2020Assignee: Danfoss A/SInventors: Welm Friedrichsen, Lars Martensen, Frank Holm Iversen, Palle Olsen, Stig Kildegaard Andersen
-
Patent number: 10571156Abstract: A valve (9) for use in a vapour compression system (1) is disclosed. The valve (9) comprises a first inlet (13) arranged to be connected to a gaseous outlet (11) of a receiver (6), a second inlet (14) arranged to be connected to an outlet of an evaporator (8), a first outlet (15) arranged to be connected to an inlet of a compressor unit (2), a non-return valve arrangement (19) arranged to allow a fluid flow from the second inlet (14) towards the first outlet (15), but to prevent a fluid flow from the first outlet (15) towards the second inlet (14), and a control valve mechanism (20) arranged to control a fluid flow from the first inlet (13) towards the first outlet (15).Type: GrantFiled: May 13, 2016Date of Patent: February 25, 2020Assignee: Danfoss A/SInventor: Michael Birkelund
-
Patent number: 10563892Abstract: A level sensor is configured to provide a receiver level indicating an amount of the refrigerant present in the receiver and a level model provides a heat rejecting heat exchanger estimate indicating an amount of the refrigerant present in the heat rejecting heat exchanger based on a temperature of the refrigerant. From the sensor and the model, a loss of refrigerant from the refrigerant vapor compression system is estimated.Type: GrantFiled: August 21, 2015Date of Patent: February 18, 2020Assignee: Danfoss A/SInventors: Frede Schmidt, Kristian Fredslund, Jan Prins
-
Patent number: 10557473Abstract: This disclosure relates to a control system and method for the centrifugal compressor. The system, for example, includes a controller configured command an adjustment of at least one of (1) a flow regulator and (2) a speed of a shaft in order to provide safe, efficient compressor operation. Centrifugal compressors are used to circulate refrigerant in a chiller via a refrigerant loop. Centrifugal compressors operate efficiently before reaching a condition known as surge.Type: GrantFiled: February 20, 2014Date of Patent: February 11, 2020Assignee: DANFOSS A/SInventors: William Turner Thornton, Lin Sun
-
Patent number: 10551102Abstract: A bulb (5) for a thermostatic expansion valve is provided, said bulb (5) comprising a chamber (7), said chamber (7) being located within a metallic casing of said bulb and being filled with a filling adapted to influence a valve element of said thermostatic expansion valve. Service of a temperature controlled valve connected to a bulb should be facilitated. To this end said bulb (5) comprises a connection geometry (10) adapted to be connected to a capillary member (6) and said casing being provided with a closed opening zone located within said connection geometry (10), said opening zone being adapted to be opened upon mounting a counterpart (15) to said connection geometry (10).Type: GrantFiled: January 5, 2016Date of Patent: February 4, 2020Assignee: Danfoss A/SInventor: Jens Erik Rasmussen
-
Patent number: 10544971Abstract: A method for controlling a vapor compression system (1) is disclosed, the vapor compression system (1) comprising an ejector (5). The method comprises controlling a compressor unit (2) in order to adjust a pressure inside a receiver (6), on the basis of a detected pressure of refrigerant leaving an evaporator (8). The portion of refrigerant leaving the evaporator (8) which is supplied to a secondary inlet (15) of the ejector is maximized and the portion of refrigerant supplied directly to the compressor unit (2) is minimized, while ensuring that the pressure of refrigerant leaving the evaporator (8) does not decrease below an acceptable level.Type: GrantFiled: October 7, 2015Date of Patent: January 28, 2020Assignee: DANFOSS A/SInventors: Kristian Fredslund, Frede Schmidt, Kenneth Bank Madsen, Jan Prins
-
Patent number: 10527361Abstract: A heat exchanger is provided comprising a stack of heat exchanger plates (1, 1a, 1b, 1c) formed of sheet metal having a three-dimensional structured pattern (2, 3), each heat exchanger plate (1, 1a, 1b, 1c) having a groove (10), a gasket (9) being arranged in said groove (10) and resting against an adjacent heat exchanger plate (1a), said groove (10) having a bottom inner surface (11), said inner surfacebottom (11) having at least a protrusion (14, 15) directed to said adjacent heat exchanger plate (1a). It is intended to minimize the risk of a leakage. To this end in the region of said protrusion (14, 15) said gasket (9) is compressed more than in a region out of said protrusion (14, 15).Type: GrantFiled: November 11, 2015Date of Patent: January 7, 2020Assignee: Danfoss A/SInventor: Lars Persson
-
Patent number: 10508850Abstract: A vapour compression system (1) includes an ejector (6) and a liquid separating device (10) arranged in a suction line. At least one evaporator (9) is allowed to be operated in a flooded state. A flow rate of refrigerant from the liquid separating device (10) to the secondary inlet (15) of the ejector (6) is detected, and it is determined whether or not the flow rate is sufficient to remove liquid refrigerant produced by the evaporator(s) (9) from the liquid separating device (10). In the case that it is determined that the flow rate of refrigerant from the liquid separating device (10) to the secondary inlet (15) of the ejector (6) is insufficient to remove liquid refrigerant produced by the evaporator(s) (9), the flow rate of refrigerant from the liquid separating device (10) to the secondary inlet (15) of the ejector (6) is increased, and/or a flow rate of liquid refrigerant from the evaporator(s) (9) to the liquid separating device (10) is decreased.Type: GrantFiled: October 14, 2016Date of Patent: December 17, 2019Assignee: Danfoss A/SInventors: Jan Prins, Frede Schmidt, Kenneth Bank Madsen, Kristian Fredslund
-
Patent number: 10495074Abstract: A pump arrangement (1) is provided comprising a driving shaft (2), cylinder drum means (3a, 3b) fixed to said shaft (2) in rotational direction and having a plurality of cylinders (6a, 6b), and a piston (7a, 7b) in each cylinder, each piston (7a, 7b) having a slide shoe (8a, 8b) in contact with driving surface means (8a, 8b). Such a pump arrangement should produce a pressure with low undulations. To this end said cylinder drum means (3a. 3b) comprise at least a first cylinder drum (3a) and a second cylinder drum (3b), said cylinder drums (3a, 3b) being fixed to said common shaft (2) in rotational direction, wherein the cylinder drums (3a, 3b) are offset with respect to each other in rotational direction.Type: GrantFiled: November 3, 2015Date of Patent: December 3, 2019Assignee: Danfoss A/SInventors: Welm Friedrichsen, Stig Kildegaard Andersen, Lars Martensen
-
Patent number: 10488088Abstract: A valve arrangement according to the present disclosure includes a valve module and a drain valve. The valve module includes first and second functional spaces, and an attachment interface defining a passage into one of the first or second functional spaces. The drain valve includes a fluid inlet and a fluid outlet formed through a common connector part that is connectable to the attachment interface to connect the fluid inlet of the drain valve to the second functional space and the at least one fluid outlet to the first functional space.Type: GrantFiled: August 4, 2017Date of Patent: November 26, 2019Assignee: DANFOSS A/SInventors: Giriraj Verma, Rajendren Gurumoorthy, Shrikant Chandrakant Kulkarni, Niels P. Vestergaard
-
Patent number: 10473403Abstract: The invention relates to a plate heat exchanger (9) with a plurality of heat exchanger plates (1, 13), each comprising at least one section showing indentations (2, 3, 14, 15), intended to be placed against corresponding indentations (2, 3, 14, 15) of a heat exchanger plate (1, 13) of a corresponding design. The heat exchanger (9) has a first type of indentations (2, 14) and a second type of indentations (3, 15), wherein the number of said first type of indentations (2, 14) and said second type of indentations (3, 15) are differing.Type: GrantFiled: January 12, 2016Date of Patent: November 12, 2019Assignee: DANFOSS A/SInventor: Lars Persson
-
Patent number: D872831Type: GrantFiled: July 6, 2016Date of Patent: January 14, 2020Assignee: Danfoss A/SInventors: Bjarne Hechmann Lagoni, Simon Ahrens Lassen, Klaus Halldorsson, Jens Erik Rasmussen