Patents Assigned to Danfoss A/S
-
Patent number: 11555550Abstract: The invention relates to a capsule for a valve as well as to a valve comprising such a capsule. The task of the present invention is to provide a valve in which tight tolerances for construction can be achieved and the assembly of the valve is simplified. According to the present invention the above task is solved by a capsule (1) for a valve comprising at least one diaphragm (2), a valve seat (3), a capsule inlet (5) and a capsule outlet (6). The valve seat (3) is openable and closable to permit or stop a fluid flow from the capsule inlet (5) to the capsule outlet (6). The above task is also solved by a capsule (1) for a valve that comprises at least one diaphragm (2), a valve seat (3), a capsule inlet (5) and a capsule outlet (6), wherein the capsule (1) is structured and arranged to control the position of a pilot valve element external to the capsule (1).Type: GrantFiled: January 3, 2017Date of Patent: January 17, 2023Assignee: Danfoss A/SInventors: Simon Ahrens Lassen, Klaus Halldorsson, Jens Erik Rasmussen, Bjarne Hechmann Lagoni
-
Patent number: 11549762Abstract: Embodiments of the present invention disclose a heat exchanger and an air-conditioning system. The heat exchanger comprises heat exchange tubes. The heat exchange tubes comprise first heat exchange tubes configured to form a first circuit, and second heat exchange tubes configured to form a second circuit. With the heat exchanger and the air-conditioning system according to the embodiments of the present invention, for example, a heat exchange capacity of the heat exchanger in a part load condition is improved.Type: GrantFiled: December 11, 2019Date of Patent: January 10, 2023Assignee: Danfoss A/SInventors: Pierre Olivier Pelletier, Junfeng Jin
-
Patent number: 11549734Abstract: A method for terminating defrosting of an evaporator (104) is disclosed. The evaporator (104) is part of a vapour compression system (100). The vapour compression system (100) further comprises a compressor unit (101), a heat rejecting heat exchanger (102), and an expansion device (103). The compressor unit (101), the heat rejecting heat exchanger (102), the expansion device (103) and the evaporator (104) are arranged in a refrigerant path, and an air flow is flowing across the evaporator (104). When ice is accumulated on the evaporator (104), the vapour compression system (100) operates in a defrosting mode. At least one temperature sensor (305) monitors a temperature Tair, of air leaving the evaporator (104). A rate of change of Tair is monitored and defrosting is terminated when the rate of change of the temperature, Tair, approaches zero.Type: GrantFiled: June 21, 2019Date of Patent: January 10, 2023Assignee: Danfoss A/SInventors: Roozbeh Izadi-Zamanabadi, Carsten Mølhede Thomsen
-
Patent number: 11473853Abstract: A heat exchanger plate (1) is described comprising an edge (2), a groove (3) running along the edge (2), and a corrugated area (4) having tops (5) and valleys (6) between the groove (3) and the edge (2), wherein the tops (5) run substantially perpendicular to the edge (2) and the groove (3) comprises an external wall (7) adjacent to the corrugated area (4) and an internal wall (8). Using such a heat exchanger plate (1) it should be possible to produce a reliable plate-type heat exchanger of simple construction. To this end the external wall (7) is in form of a wavy shape.Type: GrantFiled: November 5, 2020Date of Patent: October 18, 2022Assignee: Danfoss A/SInventors: Ivan Knudsen, Helge Nielsen
-
Patent number: 11466698Abstract: An actuator assembly includes a first actuator, a second actuator, and a moving piece that is disposed between the first actuator and the second actuator. The moving piece is positionable to close a gap in the compressor.Type: GrantFiled: July 29, 2019Date of Patent: October 11, 2022Assignee: Danfoss A/SInventors: Delvis Anibal Gonzalez, Mogens Rasmussen
-
Patent number: 11460230Abstract: A method for controlling a vapour compression system (1) is disclosed, the vapour compression system (1) comprising at least one expansion device (8) and at least one evaporator (9). For each expansion device (8), an opening degree of the expansion device (8) is obtained, and a representative opening degree, ODrep, is identified based on the obtained opening degree(s) of the expansion device(s) (8). The representative opening degree could be a maximum opening degree, ODmax, being the largest among the obtained opening degrees. The representative opening degree, ODrep, is compared to a predefined target opening degree, ODtarget, and a minimum setpoint value, SPrec, for a pressure prevailing inside a receiver (7), is calculated or adjusted, based on the comparison. The vapour compression system (1) is controlled to obtain a pressure inside the receiver (7) which is equal to or higher than the calculated or adjusted minimum setpoint value, SPrec.Type: GrantFiled: October 14, 2016Date of Patent: October 4, 2022Assignee: Danfoss A/SInventors: Jan Prins, Frede Schmidt, Kenneth Bank Madsen, Kristian Fredslund
-
Patent number: 11422013Abstract: A sensor housing (1) including a longitudinal axis (2), a clamping area (3) surrounding the longitudinal axis (2) and a recess (4) in the clamping area (3) is described, the recess (4) running in circumferential direction. In such a sensor housing a recess in the clamping area (3) should be provided with low production costs. To this end the recess (4) is formed between a part 6 of the housing (1) and a locking element (5) fixed to the housing (1).Type: GrantFiled: November 8, 2019Date of Patent: August 23, 2022Assignee: Danfoss A/SInventors: Jørgen Grønbæk Holm, Hans-Henning Hansen, Veenith Shetty
-
Patent number: 11365919Abstract: An apparatus (1) for removing non-condensable gases from a refrigerant is described, said apparatus (1) comprising a pipe arrangement (2) having a pipe (3), cooling means (4) for the pipe (3), and venting means, wherein the pipe (3) comprises a connection geometry (5) for a connection to a refrigerant system. Such an apparatus should be operated with good efficiency. To this end the pipe comprises at least a first section (6) and a second section (7) which are directed in different directions.Type: GrantFiled: July 2, 2019Date of Patent: June 21, 2022Assignee: Danfoss A/SInventors: Thomas Lund, Johan Van Beek, Niels P. Vestergaard
-
Patent number: 11340000Abstract: A method for controlling a vapour compression system (1) is disclosed. A mass flow of refrigerant along a part of the refrigerant path is estimated, based on measurements performed by one or more pressure sensors (10, 12, 13) for measuring a refrigerant pressure at selected positions along the refrigerant path and one or more temperature sensors (11, 14) for measuring a refrigerant temperature at selected positions along the refrigerant path. A refrigerant pressure or a refrigerant temperature at a selected position a pressure sensor (10, 12, 13) or temperature sensor (11, 14) along the refrigerant path is derived, based on the estimated mass flow. The vapour compression system (1) is allowed to continue operating, even if a sensor (10, 11, 12, 13, 14) is malfunctioning or unreliable.Type: GrantFiled: November 15, 2017Date of Patent: May 24, 2022Assignee: Danfoss A/SInventors: Frede Schmidt, Jan Prins, Kristian Fredslund, Kenneth Bank Madsen
-
Patent number: 11333449Abstract: A heat transfer plate and/or a plate heat exchanger including the heat transfer plate includes a plate body forming a patterned section and having a first side and a second side opposite to the first side; a gasket groove formed depressed from the plate body in a direction from the first side towards the second side, and having a bottom wall, the bottom wall having a bottom wall body; and where the gasket groove includes at least a first section with a first recess formed on the bottom wall body, depressed from the bottom wall body in the direction from the first side towards the second side, and a second section with a second recess formed on the bottom wall body, depressed from the bottom wall body in the direction from the second side towards the first side, wherein the second section is adapted to accommodate a gasket.Type: GrantFiled: October 11, 2019Date of Patent: May 17, 2022Assignee: Danfoss A/SInventor: Benny Andersen
-
Patent number: 11333439Abstract: A spiral heat exchanger is formed of at least two sheets extending along a spiral-shaped path around a common centre body and separated to form at least a first and a second spiral-shaped substantially parallel flow channels extending and enabling flow communication between a radially outer orifice and a radially inner orifice. The centre body includes a wall body with a first conduit at the inner surface of the wall body being in fluid connection to the first flow channel, and a second conduit formed at the outer surface of the wall body and being in fluid connection to the second flow channel.Type: GrantFiled: October 23, 2020Date of Patent: May 17, 2022Assignee: Danfoss A/SInventors: Helge Nielsen, Jes Petersen
-
Patent number: 11320207Abstract: A heat transfer plate (10) for a plate heat exchanger (100) includes: a plate body (11) having a first side (111) and a second side (112) opposite to the first side (111); a gasket groove (12) formed on the plate body (11), depressed from the plate body (11) in a direction from the first side (111) towards the second side (112), and having a bottom wall (120), the bottom wall (120) having a bottom wall body (121); and a recess (20, 20?) formed on at least one segment (125, 125?) of the bottom wall body (121) in a length direction of the bottom wall body (121), depressed from the bottom wall body (121) in the direction from the first side (111) towards the second side (112), and extending along the segment (125, 125?) of the bottom wall body (121) of the gasket groove (12).Type: GrantFiled: November 20, 2018Date of Patent: May 3, 2022Assignee: Danfoss A/SInventor: Benny Andersen
-
Patent number: 11215377Abstract: A control system (1) for controlling a cooling system comprising two or more cooling entities (2) is disclosed. The control system comprises a central control unit (3), two or more entity controllers (4), each entity controller (4) being associated with one of the cooling entities (2), and each entity controller (4) being provided with a nearfield communication interface (6) allowing communication between the entity controller (4) and a portable device (7), via a nearfield communication channel, and a secured communication network (5) connecting the central control unit (3) with each of the entity controllers (4). The central control unit (3) is configured to generate blocking signals and/or unblocking signals and communicate the blocking signals and/or unblocking signals to each of the entity controllers (4), via the secured communication network (5).Type: GrantFiled: April 11, 2018Date of Patent: January 4, 2022Assignee: Danfoss A/SInventors: Ejnar Luckmann, Lars Jensen
-
Patent number: 11162724Abstract: A method for controlling ejector capacity in a vapour compression system (1) is disclosed. A parameter value being representative for a flow rate of liquid refrigerant from the evaporator(s) (8, 10) and into a return pipe (12, 13) is obtained, and the capacity of the ejector(s) (6) is adjusted based on the obtained parameter value. Ejector capacity may be shifted between low pressure ejectors (liquid ejectors) (6a, 6b, 6c, 6d) and high pressure ejectors (gas ejectors) (6e, 6f).Type: GrantFiled: December 20, 2017Date of Patent: November 2, 2021Assignee: DANFOSS A/SInventors: Lars Finn Sloth Larsen, Jan Prins, Kenneth Bank Madsen
-
Patent number: 11162727Abstract: A method for controlling suction pressure in a vapour compression system including one or more cooling entities is disclosed. For each cooling entity, a maximum required suction pressure and/or a required change in suction pressure for maintaining a target temperature in the refrigerated volume is obtained. A most loaded cooling entity among the one or more cooling entities is identified, based on the maximum required suction pressures and/or the required changes in suction pressure. The suction pressure of the vapour compression system is controlled in accordance with the maximum required suction pressure and/or required change in suction pressure for the identified most loaded cooling entity.Type: GrantFiled: April 25, 2018Date of Patent: November 2, 2021Assignee: Danfoss A/SInventors: Lars Finn Sloth Larsen, Jan Prins, Torben Green
-
Patent number: 11125216Abstract: A centrifugal compressor for HVAC application includes a rotary component rotatable about an axis, a static component, and a brush seal fixed to one of the static component and the rotary component. The brush seal includes bristles that contact the other of the static component and the rotary component.Type: GrantFiled: June 28, 2019Date of Patent: September 21, 2021Assignee: Danfoss A/SInventors: Tianlei Li, Lin Sun, Mihai Bogdan Dobrica
-
Patent number: 11067100Abstract: The invention relates to a device for supplying ports to a machine section (26) of a hydraulic machine arrangement (40), the device (10) comprising a low-pressure inlet port (12), a leakage inlet (16), a low-pressure chamber (18) having a low-pressure opening (22) for establishing fluid communication with the machine section (26), a high-pressure outlet port (14), and a high-pressure chamber (20) that is in fluid communication with the high-pressure outlet port (14), the high-pressure chamber (20) having a high-pressure opening (24) for establishing fluid communication with the machine section (26), wherein the low-pressure inlet port (12) is in fluid communication with the low-pressure chamber (18), wherein a leakage path (36) extends from the high-pressure chamber (20) through the machine section (26) to the leakage inlet (16), characterized in that the device (10) further comprises a control valve member (28) connecting the leakage inlet (16) to the low-pressure chamber (18), wherein the control valve membType: GrantFiled: May 20, 2020Date of Patent: July 20, 2021Assignee: DANFOSS A/SInventors: Georg Enevoldsen, Poul Erik Hansen, Frank Holm Iversen
-
Patent number: 11067191Abstract: The present invention relates to a top cover (5) for soft throttling valve body (2), the top cover (5) comprising one or more fluid conduits for transferring a pilot fluid flow for setting a degree of opening of a main valve situated in a soft throttling valve body to the soft throttling valve body. Furthermore, the invention relates to a soft throttling valve (1) and a method for assembling the soft throttling valve (1). The object of the invention is to allow a good control of the pilot fluid flow while protecting the soft throttling valve body from damage due to valve failure. The object is solved by having a follower arrangement arranged to throttle the pilot fluid flow depending on the degree of opening of the main valve, further having a manual opening arrangement for manually opening the main valve and/or by further preventing a step-wise opening of the main valve in less than two opening steps. A method for assembling a soft throttling valve is also disclosed.Type: GrantFiled: October 27, 2017Date of Patent: July 20, 2021Assignee: DANFOSS A/SInventors: Niels P. Vestergaard, Detlef Matzen, Rajakumar Kanajam, Raghavendra Venkatesh, Torben Schack Fabricius
-
Patent number: D926602Type: GrantFiled: September 6, 2019Date of Patent: August 3, 2021Assignee: DANFOSS A/SInventors: Sadhu Sharan Prasad, Somanadha Rao Raparty, Balasubramanian Shanmugakani, Usha Palanivelu, Hareesha Shetty
-
Patent number: D958948Type: GrantFiled: November 4, 2019Date of Patent: July 26, 2022Assignee: Danfoss A/SInventors: Su Cheong Ho, Detlef Matzen, Artem Tsvetkov