Patents Assigned to Danfoss A/S
  • Patent number: 11460230
    Abstract: A method for controlling a vapour compression system (1) is disclosed, the vapour compression system (1) comprising at least one expansion device (8) and at least one evaporator (9). For each expansion device (8), an opening degree of the expansion device (8) is obtained, and a representative opening degree, ODrep, is identified based on the obtained opening degree(s) of the expansion device(s) (8). The representative opening degree could be a maximum opening degree, ODmax, being the largest among the obtained opening degrees. The representative opening degree, ODrep, is compared to a predefined target opening degree, ODtarget, and a minimum setpoint value, SPrec, for a pressure prevailing inside a receiver (7), is calculated or adjusted, based on the comparison. The vapour compression system (1) is controlled to obtain a pressure inside the receiver (7) which is equal to or higher than the calculated or adjusted minimum setpoint value, SPrec.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: October 4, 2022
    Assignee: Danfoss A/S
    Inventors: Jan Prins, Frede Schmidt, Kenneth Bank Madsen, Kristian Fredslund
  • Patent number: 11422013
    Abstract: A sensor housing (1) including a longitudinal axis (2), a clamping area (3) surrounding the longitudinal axis (2) and a recess (4) in the clamping area (3) is described, the recess (4) running in circumferential direction. In such a sensor housing a recess in the clamping area (3) should be provided with low production costs. To this end the recess (4) is formed between a part 6 of the housing (1) and a locking element (5) fixed to the housing (1).
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: August 23, 2022
    Assignee: Danfoss A/S
    Inventors: Jørgen Grønbæk Holm, Hans-Henning Hansen, Veenith Shetty
  • Patent number: 11365919
    Abstract: An apparatus (1) for removing non-condensable gases from a refrigerant is described, said apparatus (1) comprising a pipe arrangement (2) having a pipe (3), cooling means (4) for the pipe (3), and venting means, wherein the pipe (3) comprises a connection geometry (5) for a connection to a refrigerant system. Such an apparatus should be operated with good efficiency. To this end the pipe comprises at least a first section (6) and a second section (7) which are directed in different directions.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: June 21, 2022
    Assignee: Danfoss A/S
    Inventors: Thomas Lund, Johan Van Beek, Niels P. Vestergaard
  • Patent number: 11340000
    Abstract: A method for controlling a vapour compression system (1) is disclosed. A mass flow of refrigerant along a part of the refrigerant path is estimated, based on measurements performed by one or more pressure sensors (10, 12, 13) for measuring a refrigerant pressure at selected positions along the refrigerant path and one or more temperature sensors (11, 14) for measuring a refrigerant temperature at selected positions along the refrigerant path. A refrigerant pressure or a refrigerant temperature at a selected position a pressure sensor (10, 12, 13) or temperature sensor (11, 14) along the refrigerant path is derived, based on the estimated mass flow. The vapour compression system (1) is allowed to continue operating, even if a sensor (10, 11, 12, 13, 14) is malfunctioning or unreliable.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: May 24, 2022
    Assignee: Danfoss A/S
    Inventors: Frede Schmidt, Jan Prins, Kristian Fredslund, Kenneth Bank Madsen
  • Patent number: 11333449
    Abstract: A heat transfer plate and/or a plate heat exchanger including the heat transfer plate includes a plate body forming a patterned section and having a first side and a second side opposite to the first side; a gasket groove formed depressed from the plate body in a direction from the first side towards the second side, and having a bottom wall, the bottom wall having a bottom wall body; and where the gasket groove includes at least a first section with a first recess formed on the bottom wall body, depressed from the bottom wall body in the direction from the first side towards the second side, and a second section with a second recess formed on the bottom wall body, depressed from the bottom wall body in the direction from the second side towards the first side, wherein the second section is adapted to accommodate a gasket.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: May 17, 2022
    Assignee: Danfoss A/S
    Inventor: Benny Andersen
  • Patent number: 11333439
    Abstract: A spiral heat exchanger is formed of at least two sheets extending along a spiral-shaped path around a common centre body and separated to form at least a first and a second spiral-shaped substantially parallel flow channels extending and enabling flow communication between a radially outer orifice and a radially inner orifice. The centre body includes a wall body with a first conduit at the inner surface of the wall body being in fluid connection to the first flow channel, and a second conduit formed at the outer surface of the wall body and being in fluid connection to the second flow channel.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: May 17, 2022
    Assignee: Danfoss A/S
    Inventors: Helge Nielsen, Jes Petersen
  • Patent number: 11320207
    Abstract: A heat transfer plate (10) for a plate heat exchanger (100) includes: a plate body (11) having a first side (111) and a second side (112) opposite to the first side (111); a gasket groove (12) formed on the plate body (11), depressed from the plate body (11) in a direction from the first side (111) towards the second side (112), and having a bottom wall (120), the bottom wall (120) having a bottom wall body (121); and a recess (20, 20?) formed on at least one segment (125, 125?) of the bottom wall body (121) in a length direction of the bottom wall body (121), depressed from the bottom wall body (121) in the direction from the first side (111) towards the second side (112), and extending along the segment (125, 125?) of the bottom wall body (121) of the gasket groove (12).
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: May 3, 2022
    Assignee: Danfoss A/S
    Inventor: Benny Andersen
  • Patent number: 11215377
    Abstract: A control system (1) for controlling a cooling system comprising two or more cooling entities (2) is disclosed. The control system comprises a central control unit (3), two or more entity controllers (4), each entity controller (4) being associated with one of the cooling entities (2), and each entity controller (4) being provided with a nearfield communication interface (6) allowing communication between the entity controller (4) and a portable device (7), via a nearfield communication channel, and a secured communication network (5) connecting the central control unit (3) with each of the entity controllers (4). The central control unit (3) is configured to generate blocking signals and/or unblocking signals and communicate the blocking signals and/or unblocking signals to each of the entity controllers (4), via the secured communication network (5).
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: January 4, 2022
    Assignee: Danfoss A/S
    Inventors: Ejnar Luckmann, Lars Jensen
  • Patent number: 11162727
    Abstract: A method for controlling suction pressure in a vapour compression system including one or more cooling entities is disclosed. For each cooling entity, a maximum required suction pressure and/or a required change in suction pressure for maintaining a target temperature in the refrigerated volume is obtained. A most loaded cooling entity among the one or more cooling entities is identified, based on the maximum required suction pressures and/or the required changes in suction pressure. The suction pressure of the vapour compression system is controlled in accordance with the maximum required suction pressure and/or required change in suction pressure for the identified most loaded cooling entity.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: November 2, 2021
    Assignee: Danfoss A/S
    Inventors: Lars Finn Sloth Larsen, Jan Prins, Torben Green
  • Patent number: 11162724
    Abstract: A method for controlling ejector capacity in a vapour compression system (1) is disclosed. A parameter value being representative for a flow rate of liquid refrigerant from the evaporator(s) (8, 10) and into a return pipe (12, 13) is obtained, and the capacity of the ejector(s) (6) is adjusted based on the obtained parameter value. Ejector capacity may be shifted between low pressure ejectors (liquid ejectors) (6a, 6b, 6c, 6d) and high pressure ejectors (gas ejectors) (6e, 6f).
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: November 2, 2021
    Assignee: DANFOSS A/S
    Inventors: Lars Finn Sloth Larsen, Jan Prins, Kenneth Bank Madsen
  • Patent number: 11125216
    Abstract: A centrifugal compressor for HVAC application includes a rotary component rotatable about an axis, a static component, and a brush seal fixed to one of the static component and the rotary component. The brush seal includes bristles that contact the other of the static component and the rotary component.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: September 21, 2021
    Assignee: Danfoss A/S
    Inventors: Tianlei Li, Lin Sun, Mihai Bogdan Dobrica
  • Patent number: 11067191
    Abstract: The present invention relates to a top cover (5) for soft throttling valve body (2), the top cover (5) comprising one or more fluid conduits for transferring a pilot fluid flow for setting a degree of opening of a main valve situated in a soft throttling valve body to the soft throttling valve body. Furthermore, the invention relates to a soft throttling valve (1) and a method for assembling the soft throttling valve (1). The object of the invention is to allow a good control of the pilot fluid flow while protecting the soft throttling valve body from damage due to valve failure. The object is solved by having a follower arrangement arranged to throttle the pilot fluid flow depending on the degree of opening of the main valve, further having a manual opening arrangement for manually opening the main valve and/or by further preventing a step-wise opening of the main valve in less than two opening steps. A method for assembling a soft throttling valve is also disclosed.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: July 20, 2021
    Assignee: DANFOSS A/S
    Inventors: Niels P. Vestergaard, Detlef Matzen, Rajakumar Kanajam, Raghavendra Venkatesh, Torben Schack Fabricius
  • Patent number: 11067100
    Abstract: The invention relates to a device for supplying ports to a machine section (26) of a hydraulic machine arrangement (40), the device (10) comprising a low-pressure inlet port (12), a leakage inlet (16), a low-pressure chamber (18) having a low-pressure opening (22) for establishing fluid communication with the machine section (26), a high-pressure outlet port (14), and a high-pressure chamber (20) that is in fluid communication with the high-pressure outlet port (14), the high-pressure chamber (20) having a high-pressure opening (24) for establishing fluid communication with the machine section (26), wherein the low-pressure inlet port (12) is in fluid communication with the low-pressure chamber (18), wherein a leakage path (36) extends from the high-pressure chamber (20) through the machine section (26) to the leakage inlet (16), characterized in that the device (10) further comprises a control valve member (28) connecting the leakage inlet (16) to the low-pressure chamber (18), wherein the control valve memb
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: July 20, 2021
    Assignee: DANFOSS A/S
    Inventors: Georg Enevoldsen, Poul Erik Hansen, Frank Holm Iversen
  • Patent number: 11060767
    Abstract: A method for operating a compressor unit (2) comprising one or more compressors (8, 9, 10) is disclosed, the compressor unit (2) being arranged in a vapour compression system (1). Two or more options for distributing the available compressor capacity of the compressor unit (2) between being connected to a high pressure suction line (11) and to a medium pressure suction line (13) are defined. For each option, an expected impact on one or more operating parameters of the vapour compression system (1), resulting from distributing the available compressor capacity according to the option, is predicted. An option is selected, based on the predicted expected impact for the options, and based on current operating demands of the vapour compression system (1), and the available compressor capacity is distributed according to the selected option, e.g. by means of settings of one or more valve arrangements (14, 15).
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: July 13, 2021
    Assignee: DANFOSS A/S
    Inventors: Kristian Fredslund, Jan Prins, Kenneth Madsen, Frede Schmidt
  • Patent number: 11054314
    Abstract: The present invention relates to a tubular wire shielding (9) for an exhaust gas temperature sensor arrangement (1), the tubular wire shielding (9) comprising a first shielding tube (13) comprising one or more through channels for accommodating one or more wires (6a, 6b, 8a, 8b, 11a, 11b) and/or for accommodating one or more temperature measurement sensors (7), the tubular wire shielding (9) furthermore comprising a second shielding tube (14) radially surrounding the first shielding tube (14). It is an object of the invention to provide a tubular wire shielding (9) and an exhaust temperature sensor arrangement (1) which are of good mechanical stability. The object is solved in that the tubular wire shielding (9) comprises a first tube adhesive layer (15) arranged interposed between the first shielding tube (13) and the second shielding tube (14), the first tube adhesive layer (15) fixing the first shielding tube to the second shielding tube (14).
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: July 6, 2021
    Assignee: DANFOSS A/S
    Inventor: Tom Christensen
  • Patent number: 11035617
    Abstract: A heat transfer plate (10) for a plate-and-shell heat exchanger (100), the heat transfer plate (10) includes a plate body (11) having first and second sides (111, 112) opposite to each other in a direction perpendicular to the plate body (11); and a projection (12) protruding from the plate body (11) in a direction from the first side (111) towards the second side (112), extending along a segment (115S) of a periphery (115) of the plate body (11), and having a first end (121) and a second end (122).
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: June 15, 2021
    Assignee: DANFOSS A/S
    Inventor: Bent Jensen
  • Patent number: 11035351
    Abstract: A hydraulic machine is described comprising a first part (1, 4) and a second part (7, 8), wherein the first part (1, 4) and the second part (7, 8) are movable relatively to each other in abutting relation, the first part (1, 4) comprises a pressure chamber (2) having a pressure chamber opening (6) in a contact face (5) contacting a sealing face (9) of the second part (7, 8), the second part (7, 8) comprises a low pressure area (10) connected to a low pressure opening (11) in the sealing face (9) and a high pressure area (12) connected to a high pressure opening (13) in the sealing face (9), wherein during a movement of the first part (1, 4) with respect to the second part (7, 8) in a moving direction (14) the pressure chamber opening (6) comes alternatingly in overlap with the low pressure opening (11) and the high pressure opening (13). Such a machine should be flexible in operation with low risk of damages caused by cavitation.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: June 15, 2021
    Assignee: DANFOSS A/S
    Inventors: Stig Kildegaard Andersen, Georg Herborg Enevoldsen, Sveinn Porarinsson
  • Publication number: 20210156600
    Abstract: A method for terminating defrosting of an evaporator (104) is disclosed. The evaporator (104) is part of a vapour compression system (100). The vapour compression system (100) further comprises a compressor unit (101), a heat rejecting heat exchanger (102), and an expansion device (103). The compressor unit (101), the heat rejecting heat exchanger (102), the expansion device (103) and the evaporator (104) are arranged in a refrigerant path, and an air flow is flowing across the evaporator (104). When ice is accumulated on the evaporator (104), the vapour compression system (100) operates in a defrosting mode. At least one temperature sensor (305) monitors a temperature Tair, of air leaving the evaporator (104). A rate of change of Tair is monitored and defrosting is terminated when the rate of change of the temperature, Tair, approaches zero.
    Type: Application
    Filed: June 21, 2019
    Publication date: May 27, 2021
    Applicant: Danfoss A/S
    Inventors: Roozbeh IZADI-ZAMANABADI, Carsten Mølhede THOMSEN
  • Patent number: D926602
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: August 3, 2021
    Assignee: DANFOSS A/S
    Inventors: Sadhu Sharan Prasad, Somanadha Rao Raparty, Balasubramanian Shanmugakani, Usha Palanivelu, Hareesha Shetty
  • Patent number: D958948
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: July 26, 2022
    Assignee: Danfoss A/S
    Inventors: Su Cheong Ho, Detlef Matzen, Artem Tsvetkov