Patents Assigned to DexCom, Inc.
-
Patent number: 8053018Abstract: The invention provides an implantable membrane for regulating the transport of analytes therethrough that includes a matrix including a first polymer; and a second polymer dispersed throughout the matrix, wherein the second polymer forms a network of microdomains which when hydrated are not observable using photomicroscopy at 400× magnification or less. In one aspect, the homogeneous membrane of the present invention has hydrophilic domains dispersed substantially throughout a hydrophobic matrix to provide an optimum balance between oxygen and glucose transport to an electrochemical glucose sensor.Type: GrantFiled: January 15, 2010Date of Patent: November 8, 2011Assignee: DexCom, Inc.Inventors: Mark A. Tapsak, Rathbun K. Rhodes, Mark C. Shults, Jason D. McClure
-
Patent number: 8052601Abstract: Systems and methods for processing sensor analyte data, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. During initial calibration, the analyte sensor data is evaluated over a period of time to determine stability of the sensor. The sensor may be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. The calibration may be updated after evaluating the calibration set for best calibration based on inclusion criteria with newly received reference analyte data. Fail-safe mechanisms are provided based on clinical acceptability of reference and analyte data and quality of sensor calibration. Algorithms provide for optimized prospective and retrospective analysis of estimated blood analyte data from an analyte sensor.Type: GrantFiled: August 20, 2008Date of Patent: November 8, 2011Assignee: DexCom, Inc.Inventors: Paul V. Goode, Jr., James H. Brauker, Apurv U. Kamath
-
Publication number: 20110270062Abstract: Systems and methods for minimizing or eliminating transient non-glucose related signal noise due to non-glucose rate limiting phenomenon such as ischemia, pH changes, temperatures changes, and the like. The system monitors a data stream from a glucose sensor and detects signal artifacts that have higher amplitude than electronic or diffusion-related system noise. The system replaces some or the entire data stream continually or intermittently including signal estimation methods that particularly address transient signal artifacts. The system is also capable of detecting the severity of the signal artifacts and selectively applying one or more signal estimation algorithm factors responsive to the severity of the signal artifacts, which includes selectively applying distinct sets of parameters to a signal estimation algorithm or selectively applying distinct signal estimation algorithms.Type: ApplicationFiled: July 12, 2011Publication date: November 3, 2011Applicant: DexCom, Inc.Inventors: Paul V. Goode, JR., James H. Brauker, Apurv U. Kamath, James Patrick Thrower, Victoria Carr-Brendel
-
Publication number: 20110270158Abstract: Systems and methods for integrating a continuous glucose sensor, including a receiver, a medicament delivery device, and optionally a single point glucose monitor are provided. Manual integrations provide for a physical association between the devices wherein a user (for example, patient or doctor) manually selects the amount, type, and/or time of delivery. Semi-automated integration of the devices includes integrations wherein an operable connection between the integrated components aids the user (for example, patient or doctor) in selecting, inputting, calculating, or validating the amount, type, or time of medicament delivery of glucose values, for example, by transmitting data to another component and thereby reducing the amount of user input required. Automated integration between the devices includes integrations wherein an operable connection between the integrated components provides for full control of the system without required user interaction.Type: ApplicationFiled: July 11, 2011Publication date: November 3, 2011Applicant: DexCom, Inc.Inventors: James H. Brauker, Mark A. Tapsak, Sean T. Saint, Apurv U. Kamath, Paul V. Neale, Peter C. Simpson, Michael Robert Mensinger, Dubravka Markovic
-
Patent number: 8050731Abstract: The invention provides an implantable membrane for regulating the transport of analytes therethrough that includes a matrix including a first polymer; and a second polymer dispersed throughout the matrix, wherein the second polymer forms a network of microdomains which when hydrated are not observable using photomicroscopy at 400× magnification or less. In one aspect, the homogeneous membrane of the present invention has hydrophilic domains dispersed substantially throughout a hydrophobic matrix to provide an optimum balance between oxygen and glucose transport to an electrochemical glucose sensor.Type: GrantFiled: November 16, 2005Date of Patent: November 1, 2011Assignee: DexCom, Inc.Inventors: Mark A. Tapsak, Rathbun K. Rhodes, Mark C. Shults, Jason D. McClure
-
Publication number: 20110263958Abstract: Systems and methods for dynamically and intelligently estimating analyte data from a continuous analyte sensor, including receiving a data stream, selecting one of a plurality of algorithms, and employing the selected algorithm to estimate analyte values. Additional data processing includes evaluating the selected estimative algorithms, analyzing a variation of the estimated analyte values based on statistical, clinical, or physiological parameters, comparing the estimated analyte values with corresponding measure analyte values, and providing output to a user. Estimation can be used to compensate for time lag, match sensor data with corresponding reference data, warn of upcoming clinical risk, replace erroneous sensor data signals, and provide more timely analyte information encourage proactive behavior and preempt clinical risk.Type: ApplicationFiled: July 1, 2011Publication date: October 27, 2011Applicant: DexCom, Inc.Inventors: James H. Brauker, Victoria Carr-Brendel, Paul V. Goode, Apurv U. Kamath, James P. Thrower, Ben Xavier
-
Publication number: 20110257895Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.Type: ApplicationFiled: June 29, 2011Publication date: October 20, 2011Applicant: DexCom, Inc.Inventors: James H. Brauker, Apurv Ullas Kamath, Paul Goode, Mark Brister
-
Publication number: 20110253533Abstract: Devices and methods for determining analyte levels are described. The devices and methods allow for the implantation of analyte-monitoring devices, such as glucose monitoring devices, that result in the delivery of a dependable flow of blood to deliver sample to the implanted device. The devices comprise a unique microarchitectural arrangement in the sensor region that allows accurate data to be obtained over long periods of time.Type: ApplicationFiled: June 22, 2011Publication date: October 20, 2011Applicant: DexCom, Inc.Inventors: Mark C. Shults, Stuart J. Updike, Rathbun K. Rhodes
-
Publication number: 20110231141Abstract: Systems and methods for processing sensor analyte data, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. During initial calibration, the analyte sensor data is evaluated over a period of time to determine stability of the sensor. The sensor may be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. The calibration may be updated after evaluating the calibration set for best calibration based on inclusion criteria with newly received reference analyte data. Fail-safe mechanisms are provided based on clinical acceptability of reference and analyte data and quality of sensor calibration. Algorithms provide for optimized prospective and retrospective analysis of estimated blood analyte data from an analyte sensor.Type: ApplicationFiled: May 31, 2011Publication date: September 22, 2011Applicant: DexCom, Inc.Inventors: Paul V. Goode, JR., James H. Brauker, Apurv U. Kamath, James P. Thrower
-
Publication number: 20110231107Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.Type: ApplicationFiled: May 26, 2011Publication date: September 22, 2011Applicant: DexCom, Inc.Inventors: James H. Brauker, Apurv Ullas Kamath, Paul Goode, Mark Brister
-
Publication number: 20110231142Abstract: Systems and methods for processing sensor analyte data, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. During initial calibration, the analyte sensor data is evaluated over a period of time to determine stability of the sensor. The sensor may be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. The calibration may be updated after evaluating the calibration set for best calibration based on inclusion criteria with newly received reference analyte data. Fail-safe mechanisms are provided based on clinical acceptability of reference and analyte data and quality of sensor calibration. Algorithms provide for optimized prospective and retrospective analysis of estimated blood analyte data from an analyte sensor.Type: ApplicationFiled: May 31, 2011Publication date: September 22, 2011Applicant: DexCom, Inc.Inventors: Paul V. Goode, JR., James H. Brauker, Apurv U. Kamath
-
Publication number: 20110231140Abstract: Systems and methods for processing sensor analyte data, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. During initial calibration, the analyte sensor data is evaluated over a period of time to determine stability of the sensor. The sensor may be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. The calibration may be updated after evaluating the calibration set for best calibration based on inclusion criteria with newly received reference analyte data. Fail-safe mechanisms are provided based on clinical acceptability of reference and analyte data and quality of sensor calibration. Algorithms provide for optimized prospective and retrospective analysis of estimated blood analyte data from an analyte sensor.Type: ApplicationFiled: May 31, 2011Publication date: September 22, 2011Applicant: DexCom, Inc.Inventors: Paul V. Goode, JR., James H. Brauker, Apurv U. Kamath
-
Publication number: 20110218414Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for processing sensor data, including calculating a rate of change of sensor data and/or determining an acceptability of sensor or reference data.Type: ApplicationFiled: April 5, 2011Publication date: September 8, 2011Applicant: DexCom, Inc.Inventors: Apurv Kamath, Ying Li
-
Patent number: 8010174Abstract: Systems and methods for minimizing or eliminating transient non-glucose related signal noise due to non-glucose rate limiting phenomenon such as ischemia, pH changes, temperatures changes, and the like. The system monitors a data stream from a glucose sensor and detects signal artifacts that have higher amplitude than electronic or diffusion-related system noise. The system replaces some or the entire data stream continually or intermittently including signal estimation methods that particularly address transient signal artifacts. The system is also capable of detecting the severity of the signal artifacts and selectively applying one or more signal estimation algorithm factors responsive to the severity of the signal artifacts, which includes selectively applying distinct sets of parameters to a signal estimation algorithm or selectively applying distinct signal estimation algorithms.Type: GrantFiled: August 22, 2003Date of Patent: August 30, 2011Assignee: DexCom, Inc.Inventors: Paul V. Goode, Jr., James H. Brauker, Apurv U. Kamath, James Patrick Thrower, Victoria Carr-Brendel
-
Patent number: 8005525Abstract: Systems and methods for minimizing or eliminating transient non-glucose related signal noise due to non-glucose rate limiting phenomenon such as ischemia, pH changes, temperatures changes, and the like. The system monitors a data stream from a glucose sensor and detects signal artifacts that have higher amplitude than electronic or diffusion-related system noise. The system replaces some or the entire data stream continually or intermittently including signal estimation methods that particularly address transient signal artifacts. The system is also capable of detecting the severity of the signal artifacts and selectively applying one or more signal estimation algorithm factors responsive to the severity of the signal artifacts, which includes selectively applying distinct sets of parameters to a signal estimation algorithm or selectively applying distinct signal estimation algorithms.Type: GrantFiled: October 14, 2009Date of Patent: August 23, 2011Assignee: DexCom, Inc.Inventors: Paul V. Goode, Jr., James H. Brauker, Apurv U. Kamath, James Patrick Thrower, Victoria Carr-Brendel
-
Patent number: 8005524Abstract: Systems and methods for dynamically and intelligently estimating analyte data from a continuous analyte sensor, including receiving a data stream, selecting one of a plurality of algorithms, and employing the selected algorithm to estimate analyte values. Additional data processing includes evaluating the selected estimative algorithms, analyzing a variation of the estimated analyte values based on statistical, clinical, or physiological parameters, comparing the estimated analyte values with corresponding measure analyte values, and providing output to a user. Estimation can be used to compensate for time lag, match sensor data with corresponding reference data, warn of upcoming clinical risk, replace erroneous sensor data signals, and provide more timely analyte information encourage proactive behavior and preempt clinical risk.Type: GrantFiled: March 24, 2010Date of Patent: August 23, 2011Assignee: DexCom, Inc.Inventors: James H. Brauker, Victoria Carr-Brendel, Paul V. Goode, Apurv U. Kamath, James P. Thrower, Ben Xavier
-
Publication number: 20110201911Abstract: This disclosure provides systems, methods and apparatus for processing, transmitting and displaying data received from an analyte sensor, such as a glucose sensor. The system may include a display device with at least one input device. In response to movement of or along the input device, the display device may change a glucose data output parameter and update an output of the display device using the changed output parameter.Type: ApplicationFiled: February 11, 2011Publication date: August 18, 2011Applicant: Dexcom, Inc.Inventors: Eric Johnson, Michael Robert Mensinger, Peter C. Simpson, Thomas Hall, Hari Hampapuram, Kostyantyn Snisarenko, Eli Reihman, Holly Chico, Kassandra Costatine
-
Patent number: 7998071Abstract: Systems and methods for minimizing or eliminating transient non-glucose related signal noise due to non-glucose rate limiting phenomenon such as ischemia, pH changes, temperatures changes, and the like. The system monitors a data stream from a glucose sensor and detects signal artifacts that have higher amplitude than electronic or diffusion-related system noise. The system replaces some or the entire data stream continually or intermittently including signal estimation methods that particularly address transient signal artifacts. The system is also capable of detecting the severity of the signal artifacts and selectively applying one or more signal estimation algorithm factors responsive to the severity of the signal artifacts, which includes selectively applying distinct sets of parameters to a signal estimation algorithm or selectively applying distinct signal estimation algorithms.Type: GrantFiled: October 14, 2009Date of Patent: August 16, 2011Assignee: DexCom, Inc.Inventors: Paul V. Goode, Jr., James H. Brauker, Apurv U. Kamath, James Patrick Thrower, Victoria Carr-Brendel
-
Patent number: 8000901Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.Type: GrantFiled: August 9, 2010Date of Patent: August 16, 2011Assignee: DexCom, Inc.Inventors: James H. Brauker, Apurv Ullas Kamath, Paul V. Goode, Mark C. Brister
-
Publication number: 20110190614Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.Type: ApplicationFiled: April 13, 2011Publication date: August 4, 2011Applicant: DexCom, Inc.Inventors: Mark Brister, Paul V. Neale, James R. Petisce, James Patrick Thrower, Sean Saint, John Nolting