Abstract: The present disclosure includes compounds, kits, and assay procedures for use in determining the levels of certain types of drugs in samples that contain specific binding proteins for the drugs. The present disclosure includes analog compounds useful for displacing the drugs from their endogenous binding proteins, and kits including same, as well as methods that utilize these displacers as binding competitors in pharmaceutical assays.
Type:
Grant
Filed:
October 25, 2019
Date of Patent:
April 16, 2024
Assignee:
Siemens Healthcare Diagnostics Inc.
Inventors:
Tie Wei, Zhu Teng, Martin Drinan, Jie Li
Abstract: Apparatus for robotic arm alignment in an automated sample analysis system includes a robotic arm, a sample tube carrier, a plurality of optical components (including, e.g., one or more cameras), and a controller. The controller is operative to process images received from the optical components to determine a first set of coordinates of a first marker relative to the sample tube carrier and determine a second set of coordinates of a second marker relative to the robotic arm. The controller is further operative to adjust the position of the robotic arm and/or the sample tube carrier in response to an excessive offset between the first and second sets of coordinates. In some embodiments, a positioning tool includes the first and second markers thereon. Methods of robotic arm alignment with a sample tube carrier in an automated sample analysis system are also provided, as are other aspects.
Type:
Application
Filed:
February 10, 2022
Publication date:
April 11, 2024
Applicant:
Siemens Healthcare Diagnostics Inc.
Inventors:
Yao-Jen Chang, Rayal Raj Prasad Nalam Venkat, Benjamin S. Pollack, Ankur Kapoor
Abstract: Methods of predicting a fault in a diagnostic laboratory system include providing one or more sensors; generating data using the one or more sensors; inputting the data into an artificial intelligence algorithm, the artificial intelligence algorithm configured to predict at least one fault in the diagnostic laboratory system in response to the data; and predicting at least one fault in the diagnostic laboratory system using the artificial intelligence algorithm. Other methods, systems, and apparatus are also disclosed.
Type:
Application
Filed:
February 7, 2022
Publication date:
April 11, 2024
Applicant:
Siemens Healthcare Diagnostics Inc.
Inventors:
Vivek Singh, Rayal Raj Prasad Nalam Venkat, Yao-Jen Chang, Venkatesh NarasimhaMurthty, Benjamin S. Pollack, Ankur Kapoor
Abstract: Disclosed are optical interrogation apparatus that can produce lens-free images using an optoelectronic sensor array to generate a holographic image of sample objects, such as microorganisms in a sample. Also disclosed are methods of detecting and/or identifying microorganisms in a biological sample, such as microorganisms present in low levels. Also disclosed are methods of using systems to detect microorganisms in a biological sample, such as microorganisms present in low levels. In addition or as an alternative, the methods of using systems may identify microorganisms present in a sample and/or determine antimicrobial susceptibility of such microorganisms.
Abstract: Provided herein are antigenic molecules that can be used to generate antibodies capable of binding to a vitamin D derivative, such as 25-hydroxyvitamin D2 and/or 25-hydroxyvitamin D3, or a 25-hydroxyvitamin D analog, such as a vitamin D-C22 immunogenic molecule or compound. Antibodies produced using these antigenic molecules, and related antigenic compounds, are also described. In addition, disclosed herein are methods for detecting vitamin D deficiency in a subject, methods for treating a subject suspected of having a vitamin D deficiency, methods for monitoring progression of vitamin D deficiency in a subject, and methods for monitoring treatment of vitamin D deficiency in a subject in need thereof. The methods involve the detection or quantification of 25-hydroxyvitamin D2 and D3.
Type:
Application
Filed:
October 12, 2023
Publication date:
March 21, 2024
Applicant:
Siemens Healthcare Diagnostics Inc.
Inventors:
Niver Panosian Sahakian, Bruce A. Campbell, Spencer Hsiang-Hsi Lin, James Vincent Freeman, Qimu Liao, Ramon A. Evangelista
Abstract: A system and method are provided for collection and testing of a biologic sample. The system and method comprise collecting by a user of a testing device a biologic sample for use with the testing device, assigning correlative values as test results, and receiving the test results at a server disposed on a network. Some aspects further include presenting advertisements and other messages to users through a mobile application operating on a mobile device. These aspects take into account the results of the self-diagnostic test and present different advertisements to the user based on the results of the test.
Type:
Grant
Filed:
August 23, 2021
Date of Patent:
March 19, 2024
Assignee:
Reliant Immune Diagnostics, Inc.
Inventors:
Jovan Hutton Pulitzer, Henry Joseph Legere, III
Abstract: Hydrophilic, high quantum yield, chemiluminescent acridinium compounds with increased light output, improved stability, fast light emission and decreased non specific binding are disclosed. The chemiluminescent acridinium esters possess hydrophilic, branched, electron-donating functional groups at the C2 and/or C7 positions of the acridinium nucleus.
Type:
Grant
Filed:
April 7, 2022
Date of Patent:
March 19, 2024
Assignee:
Siemens Healthcare Diagnostics Inc.
Inventors:
Anand Natrajan, David Sharpe, Qingping Jiang, David Wen
Abstract: Systems and methods for determining an evaluation of one or more patients is provided. User input for evaluating one or more patients is received. A commit bundle is retrieved from a commit database. An evaluation of the one or more patients is determined based on the user input using a medical ontology configured with the retrieved commit bundle. The medical ontology is separate from the commit database. Results of the evaluation of the one or more patients are output.
Abstract: A lateral-flow assay device includes a substrate having a sample addition zone and a wash addition zone downstream thereof along a fluid flow path through which a sample flows. The fluid flow path is configured to receive a wash fluid in the wash addition zone. A hydrophilic surface is arranged in the wash addition zone. Flow constriction(s) are spaced apart from the fluid flow path and arranged to define, with the hydrophilic surface, a reservoir configured to retain the wash fluid by formation of a meniscus between the hydrophilic surface and the flow constriction(s). The fluid flow path draws the wash fluid from the reservoir by capillary pressure. Apparatus for analyzing a fluidic sample and methods of displacing a fluidic sample in a fluid flow path of an assay device are also described.
Type:
Grant
Filed:
January 18, 2022
Date of Patent:
March 19, 2024
Assignee:
Ortho-Clinical Diagnostics, Inc.
Inventors:
Zhong Ding, Edward R. Scalice, Daniel P. Salotto
Abstract: Aspects of the present disclosure relate generally to methods, compositions, and kits for in situ whole cell or single cell barcoding. Aspects of the present disclosure also include a computer readable-medium and a processor to carry out the steps of the method described herein. In some embodiments, the disclosure relates to whole cell or single cell barcoding performed in situ.
Type:
Application
Filed:
September 14, 2023
Publication date:
March 14, 2024
Applicant:
Factorial Diagnostics, Inc.
Inventors:
Katie Leigh ZOBECK, Hunter RICHARDS, John Daniel WELLS
Abstract: A method, device and system for enhancing image quality of an image is provided. In one aspect, the method includes illuminating a sample with a light source associated with an imaging device. Further, the method includes simulating a transmission wave at a sensor plane of the imaging device for a light wave from illuminating the sample. Additionally, the method includes determining a phase and amplitude information associated with the light wave based on the transmission wave. The method also includes determining at least one microscope transfer function associated with the imaging device based on the phase and amplitude information. Furthermore, the method includes generating a modified mi-croscope transfer function using a Zernike function based on the at least one microscope transfer function in an iterative procedure and enhancing the image quality associated with the im-age using the modified microscope transfer function.
Abstract: A method of characterizing a serum or plasma portion of a specimen in a specimen container provides a fine-grained HILN index (hemolysis, icterus, lipemia, normal) of the serum or plasma portion of the specimen, wherein the H, I, and L classes may each have five to seven sub-classes. The HILN index may also have one un-centrifuged class. Pixel data of an input image of the specimen container may be processed by a deep semantic segmentation network having, in some embodiments, more than 100 layers. A small front-end container segmentation network may be used to determine a container type and boundary, which may additionally be input to the deep semantic segmentation network. A discriminative network may be used to train the deep semantic segmentation network to generate a homogeneously structured output. Quality check modules and testing apparatus configured to carry out the method are also described, as are other aspects.
Type:
Grant
Filed:
June 10, 2019
Date of Patent:
March 12, 2024
Assignee:
Siemens Healthcare Diagnostics Inc.
Inventors:
Kai Ma, Yao-Jen Chang, Terrence Chen, Benjamin S. Pollack
Abstract: An analyzer system for in vitro diagnostics includes a sample handler module having a robot arm that delivers samples from drawers into carriers on a linear synchronous motor automation track. Samples are delivered via the automation track to individual track sections associated with individual analyzer modules. Analyzer modules aspirate sample portions directly from the sample carriers and perform analysis thereon.
Type:
Grant
Filed:
June 15, 2022
Date of Patent:
March 12, 2024
Assignee:
Siemens Healthcare Diagnostics Inc.
Inventors:
David Stein, Roy Barr, Mark Edwards, Colin Mellars, Thomas J. Bao, Charles V. Cammarata, Benjamin S. Pollack, Baris Yagci, Beri Cohen
Abstract: A system for coupling photometers to an incubation ring for use in in vitro diagnostics comprises one or more light sources, and an incubation ring assembly, and two photometers. An incubation ring assembly comprises an internal trough and an external trough. Each trough comprises (a) an internal wall comprising an internal aperture and (b) an external wall comprising an external aperture. A first photometer comprises: a first optics housing directing light from the light sources through the external aperture of the internal trough, and a first detector positioned to receive the light through the internal aperture of the internal trough. A second photometer comprises a second optics housing directing the light from the light sources through the internal aperture of the external trough, and a second detector positioned to receive the light through the external aperture of the external trough.
Abstract: Disclosed is an assay device which comprises a liquid sample addition zone, a reagent zone, a detection zone, and a wicking zone, all defining a fluid flow path. The device further comprises a reagent addition zone along and in fluid communication with the fluid flow path downstream of the sample addition zone and upstream of the detection zone. An interrupting wash is added at this reagent addition zone in accordance with the method of the subject invention to control sample volume. The interrupting wash fluid is added at a predetermined fill volume on the chip device and also serves to wash the detection channel and fill the remaining chip volume.
Type:
Grant
Filed:
June 8, 2020
Date of Patent:
March 5, 2024
Assignee:
Ortho-Clinical Diagnostics, Inc.
Inventors:
Edward R. Scalice, Philip C. Hosimer, Zhong Ding, James D. Kanaley, David A. Tomasso, Daniel P. Salotto, Timothy C. Warren
Abstract: Aqueous calibration or quality control reagents that include urea are disclosed; the reagents may further include at least one amino acid-containing composition to provide pH stability thereto. Methods of production and use thereof are also disclosed.
Abstract: The present invention is directed to membranes, sensors, systems and process for the detection of magnesium ions in protein-containing samples. The novel membranes, sensors, systems, and processes are based upon the discovery that the lipophilcity of the plasticizer (or blend of plasticizers) utilized in the formulation of magnesium ion selective membranes for clinical use is inversely proportional to the sensitivity of the plasticizer(s) and directly proportional to the use life thereof.
Abstract: Methods are disclosed for a sandwich assay for a small molecule having a molecular weight of about 500 to about 2,500. The method comprises the use of a first antibody that binds to the small molecule and a second antibody that binds to the small molecule at a portion of the small molecule other than a portion to which the first antibody binds. The second antibody is prepared from an immunogen that comprises a hapten that is not the small molecule or a derivative of the small molecule wherein the hapten comprises a moiety that is structurally similar to that of the second portion of the small molecule. The antibodies may be employed in sandwich assays for the small molecule.
Abstract: Embodiments provide a fluid metering device, including: a first fluid supply port for receiving a first fluid; a first fluid dispense port for dispensing the first fluid; a second fluid supply port for receiving a second fluid; a second fluid dispense port for dispensing the second fluid; a waste discharge port for discharging a mixture of the first fluid and the second fluid; a valve assembly including a plurality of valves; a manifold connected to the metering pump, wherein the manifold includes a plurality of fluid channels, and the manifold is used for communicating between the valve assembly and each port; a first tube connected between the second valve and the third valve for accommodating the mixture or the first fluid; and a second tube connected between the third valve and the fourth valve for accommodating the second fluid.
Type:
Grant
Filed:
June 24, 2021
Date of Patent:
February 27, 2024
Assignee:
Siemens Healthcare Diagnostics Inc.
Inventors:
William D. Dunfee, Robert Hopely, Jr., Colin Ingersoll, Yudis Moreta
Abstract: A pipette assembly configured to aspirate liquid from a well having a cover includes: a pipette including a terminal end; a pipette tip detachably coupled to the terminal end; and a vibration inducer configured to vibrate the pipette tip when at least a portion of the pipette tip is located in the well thus reducing stiction between the cover and the pipette tip. This minimizes the pipette tip from getting detached from the pipette and stuck in the cover. Other systems and methods including vibrating a pipette tip are disclosed.