Patents Assigned to Dow Global Technologies LLC
  • Patent number: 11884605
    Abstract: A hybrid catalyst including a metal oxide catalyst component comprising chromium, zinc, and at least one additional metal selected from the group consisting of aluminum and gallium, and a microporous catalyst component that is a molecular sieve having 8-MR pore openings. The metal oxide catalyst component includes anatomic ratio of chromium:zinc (Cr:Zn) from 0.35 to 1.00, and the at least one additional metal is present in an amount from 25.0 at % to 40.0 at %. A process for preparing C2 and C3 olefins comprising: a) introducing a feed stream comprising hydrogen gas and a carbon-containing gas selected from the group consisting of carbon monoxide, carbon dioxide, and mixtures thereof into a reaction zone of a reactor; and b) converting the feed stream into a product stream comprising C2 and C3 olefins in the reaction zone in the presence of said hybrid catalyst.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: January 30, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Glenn Pollefeyt, Davy L. S. Nieskens, Vera P. Santos Castro, Alexey Kirilin, Adam Chojecki, David Yancey, Andrzej Malek
  • Patent number: 11884821
    Abstract: A composition and a method for preparing a polymer composite article. The composition comprises (A) a filler in an amount of from 10 to 90 wt. The composition also comprises (B) a polymer in an amount of from 10 to 90 wt. %, wherein the (B) polymer is selected from polyolefins, polyamides, polyesters, or combinations thereof. Further, the composition comprises (C) an organopolysiloxane in an amount of from greater than 0 to 10 wt. %; the (C) organopolysiloxane having at least one silicon-bonded hydroxyl group and a viscosity of from 1,000 to 60,000 mPa·s at 25° C. The ranges for components (A)-(C) are based on the total weight of components (A), (B) and (C) in the composition.
    Type: Grant
    Filed: November 17, 2021
    Date of Patent: January 30, 2024
    Assignees: Dow Silicones Corporation, Dow Global Technologies LLC
    Inventors: Keith Bruce, Igor Chorvath, Marc-Andre Courtemanche, Jon V. Degroot, Jr., Sean Gaal, Craig Gross, James Keenihan, Shawn Mealey, Scott Miller, Tom Parsons, Andrew Schlader, Cristina Serrat, Lauren Tonge
  • Publication number: 20240025164
    Abstract: According to one or more embodiments presently disclosed herein, a multilayer structure may include an oriented film and a sealant layer. The oriented film may include at least 90% by weight polyethylene. The sealant layer may include from 15 wt. % to 40 wt. % of a low density polyethylene based on the total weight of the sealant layer. The sealant layer may further include (a) from 60 wt. % to 85 wt. % of an ethylene-based elastomer based on the total weight of the sealant layer, or (b) from 60 wt. % to 85 wt. % of a propylene-based plastomer based on the total weight of the sealant layer.
    Type: Application
    Filed: December 8, 2021
    Publication date: January 25, 2024
    Applicant: Dow Global Technologies LLC
    Inventor: Eva-Maria Kupsch
  • Publication number: 20240024837
    Abstract: According to one or more embodiments of the present disclosure, a riser may include a lower riser portion, where the lower riser portion terminates at an upper end of the vertical riser segment, and an upper riser portion including a lower end, where the lower end of the upper riser portion may be positioned around the upper end of the vertical riser segment of the lower riser portion. The riser may also include a first guide and a second guide each positioned on opposite sides of the interior of the lower end of the upper riser portion. The vertical riser segment of the lower riser portion may be guided in a direction substantially parallel with the outer surface of the first guide and the outer surface of the second guide when the lower riser portion expands or contracts due to changes in temperature.
    Type: Application
    Filed: December 14, 2021
    Publication date: January 25, 2024
    Applicant: Dow Global Technologies LLC
    Inventors: Matthew T. Pretz, Donald F. Shaw, Richard Edwards Walter, Fermin Alejandro Sandoval
  • Publication number: 20240026084
    Abstract: A method for making a solventless polyorganosiloxane pellet is disclosed. The pellet is comprised of a polyorganosilicate resin and a polyorganosiloxane gum. The pellet is useful for making silicone pressure sensitive adhesive compositions.
    Type: Application
    Filed: October 30, 2019
    Publication date: January 25, 2024
    Applicants: Dow Silicones Corporation, Dow Global Technologies LLC
    Inventors: Yunlong Guo, Rongrong Fan, Ruihua Lu, Wenfei Li, Zhihua Liu, Wenjie Chen, Yan Zhou, Jiayin Zhu
  • Publication number: 20240026154
    Abstract: A nylon composition comprising a blend, wherein the blend includes: (a) at least one polyamide; and (b) at least one modifier, wherein the modifier includes a substantially linear functionalized ethylene/alpha-olefin copolymer having at least one side chain furan moiety crosslinked with at least one maleimide structure; a process for making the composition; and an article made from the composition.
    Type: Application
    Filed: February 1, 2021
    Publication date: January 25, 2024
    Applicant: Dow Global Technologies LLC
    Inventors: Xilun Weng, Hongyu Chen, Ming Ming, Yonghua Gong, Wuye Ouyang, Libo Du, Shijie Ren
  • Patent number: 11878296
    Abstract: A process for separating a catalyst component from a catalyst-containing slurry by centrifugation including separating the catalyst component from the mother liquor of the catalyst-containing slurry using a stacked disc centrifuge equipped with an auto-discharging functionality. The solids discharge from the stacked disc centrifuge is enhanced by adding a washing solution to the bowl and the solids discharge chute of the stacked disc centrifuge.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: January 23, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Mrunmayi Kumbhalkar, Wu Chen, Brian Murdoch, Haifeng Shi, Lin Zhao
  • Patent number: 11879056
    Abstract: The present disclosure provides a composition. The composition contains (A) an ethylene-based polymer; and (B) a slip agent blend, the slip agent blend containing (i) from greater than 50 wt % to 99 wt % of a first polydimethylsiloxane having a number average molecular weight (Mn) from 30,000 g/mol to less than 300,000 g/mol; and (ii) from 1 wt % to less than 50 wt % of a second polydimethylsiloxane having a number average molecular weight (Mn) from 300,000 g/mol to 2,000,000 g/mol, based on the total weight of the slip agent blend. The present disclosure also provides a film with a layer containing said composition.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: January 23, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Owendi Ongayi, Cosme Llop
  • Publication number: 20240017535
    Abstract: According to one or more embodiments presently disclosed herein, a multilayer structure may include a biaxially oriented film and a sealant layer. The biaxially oriented film may include at least 90% by weight of polypropylene. The sealant layer may be on the biaxially oriented polypropylene film. The sealant layer may include from 15 to 40 percent by weight of a low density polyethylene based on the total weight of the sealant layer. The sealant layer may additionally include from 60 to 85 percent by weight of a propylene-based plastomer based on the total weight of the sealant layer. The propylene-based plastomer may have a density of 0.890 g/cm3 or less and a melt flow rate (at 230° C. and 2.16 kg) of at least 8 g/10 minutes.
    Type: Application
    Filed: December 8, 2021
    Publication date: January 18, 2024
    Applicant: Dow Global Technologies LLC
    Inventor: Eva-Maria Kupsch
  • Patent number: 11873393
    Abstract: A bimodal ethylene-based polymer, including a high density fraction (HDF) from 3.0% to 25.0%, wherein the high density fraction is measured by crystallization elution fractionation (CEF) integration at temperatures from 93° C. to 119° C., an I10/I2 ratio from 5.5 to 7.5, wherein I2 is the melt index when measured according to ASTM D 1238 at a load of 2.16 kg and temperature of 190° C. and I10 is the melt index when measured according to ASTM D 1238 at a load of 10 kg and temperature of 190° C., and a short chain branching distribution (SCBD) less than or equal to 10° C., wherein the short chain branching distribution is measured by CEF full width at half height.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: January 16, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Kyle E. Hart, Mehmet Demirors, Timothy W. Gambrel, Philip P. Fontaine, Pradeep Jain
  • Patent number: 11873400
    Abstract: A composition comprising the following components: A) a metal stearate; B) a secondary alcohol ethoxylate of the formula C12-14H25-29O [CH2CH2O]xH, wherein x=7; C) a secondary alcohol ethoxylate of the formula C12-14H25-29O [CH2CH2O]xH, C wherein x=20; D) octanoic acid; E) sodium lauryl sulfate; F) a polydimethylsiloxane (PDMS); and G) water.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: January 16, 2024
    Assignees: Dow Global Technologies LLC, Rohm and Haas Company
    Inventors: Nicholas B. Schaffer, Kevin J. Bouck, Sarah E. Decato, Shrikant Dhodapkar, Intan M. Hamdan, Remi A. Trottier, Richard A. Lundgard
  • Patent number: 11873377
    Abstract: A blown film having a bimodal ethylene-based polymer including a high density fraction (HDF) from 3.0% to 25.0%, an I10/I2 ratio from 5.5 to 7.5, a short chain branching distribution (SCBD) less than or equal to 10 C, a zero shear viscosity ratio from 1.0 to 2.5, a density from 0.902 g/cc to 0.925 g/cc, and a melt index (I2) from 0.5 g/10 mins to 2.0 g/10 mins.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: January 16, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Kyle E. Hart, Mehmet Demirors, Timothy W. Gambrel, Philip P. Fontaine, Vivek Kalihari, Francis O. Olajide, Jr., Rajen M. Patel
  • Publication number: 20240010771
    Abstract: Processes of polymerizing olefin monomers. The process includes reacting ethylene and optionally one or more olefin monomers in the presence of a catalyst system, wherein the catalyst system comprises: modified-hydrocarbyl methylaluminoxane having less than 50 mole percent AlRA1RB1RC1 based on the total moles of aluminum, where RA1, RB1, and RC1 are independently is linear (C1-C40)alkyl, branched (C1-C40)alkyl, or (C6-C40)aryl; and one or more metal-ligand complexes according to formula (I).
    Type: Application
    Filed: February 5, 2021
    Publication date: January 11, 2024
    Applicant: Dow Global Technologies LLC
    Inventors: Philip P. Fontaine, David M. Pearson, Hien Q. Do, Johnathan E. Delorbe, Rafael Huacuja, Rhett A. Baillie, Rongjuan Cong
  • Publication number: 20240010770
    Abstract: Processes of polymerizing olefin monomers.
    Type: Application
    Filed: February 5, 2021
    Publication date: January 11, 2024
    Applicant: Dow Global Technologies LLC
    Inventors: Philip P. Fontaine, David M. Pearson, Hien Q. Do, Johnathan E. Delorbe, Rafael Huacuja, Rhett A. Baillie
  • Patent number: 11866530
    Abstract: The present disclosure provides a composition. The composition can be formed into a foam composition. In an embodiment, the composition includes a neat ethylene/propylene/nonconjugated polyene interpolymer. The neat ethylene/propylene/nonconjugated polyene interpolymer includes from greater than 6.0 wt % to 15.0 wt % nonconjugated polyene. The neat ethylene/propylene/nonconjugated polyene interpolymer has the following properties: (i) a molecular weight (Mw) from 240,000 to 270,000; (ii) a Mooney viscosity (ML (1+4), 125° C.) from 85 to 95; (iii) a rheology ratio (RR) from 35 to 65; (iv) a Mw/Mn from 2.2 to 3.5; and (v) Mw<1389.6 [g/mole] MV+140,000 g/mol wherein Mw is the weight average molecular weight and MV is the Mooney Viscosity (ML 1+4, 125° C.). MV is the Mooney Viscosity (ML 1+4, 125° C.), and Mw is the weight average molecular weight, as determined by conventional GPC.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: January 9, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Xiaosong Wu, Colin Li Pi Shan, Juan C. Tuberquia, Tao Han, Guangming Li
  • Patent number: 11866524
    Abstract: Water-based pressure sensitive adhesive composition and methods of make the same are provided. The water-based pressure sensitive adhesive composition comprises at least one interpolymer dispersed within an aqueous medium, the interpolymer comprising at least one unsaturated monomer and at least one compound selected from a group consisting of at least one conjugated acid, at least one ester of a conjugated acid, and mixtures thereof.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: January 9, 2024
    Assignees: Rohm and Haas Company, Dow Global Technologies LLC
    Inventors: Jiguang Zhang, Miao Yang, Shaoguang Feng, Zhaohui Qu
  • Patent number: 11866567
    Abstract: The present disclosure provides a foam bead. The foam bead is formed from a composition containing (A) a silane-functionalized ethylene/?-olefin multi-block interpolymer. The present disclosure also provides a sintered foam structure. The sintered foam structure is formed from foam beads that are formed from a composition containing (A) a silane-functionalized ethylene/?-olefin multi-block interpolymer.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: January 9, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Haiyang Yu, Jozef J I Van Dun, Yunfeng Yang
  • Patent number: 11862300
    Abstract: Chemical formulations for chemical products can be represented by digital formulation graphs for use in machine learning models. The digital formulation graphs can be input to graph-based algorithms such as graph neural networks to produce a feature vector, which is a denser description of the chemical product than the digital formulation graph. The feature vector can be input to a supervised machine learning model to predict one or more attribute values of the chemical product that would be produced by the formulation without actually having to go through the production process. The feature vector can be input to an unsupervised machine learning model trained to compare chemical products based on feature vectors of the chemical products. The unsupervised machine learning model can recommend a substitute chemical product based on the comparison.
    Type: Grant
    Filed: February 27, 2023
    Date of Patent: January 2, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Alix Schmidt, Ian Clark
  • Patent number: 11857948
    Abstract: A packing material for chromatography, the packing material comprising coated particles, wherein the coated particles comprise non-porous particles and a portion of the surface area of the non-porous particles is coated with a coating composition comprising graphene and/or graphene oxide.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: January 2, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Rongjuan Cong, Albert Parrott, Charles Michael Cheatham, Janet Goss
  • Patent number: 11857935
    Abstract: A heterogeneous procatalyst includes a titanium species, a magnesium chloride component, and a chlorinating agent having a structure A(Cl)x(R1)3-x, where A is aluminum or boron, R1 is a (C1-C30) hydrocarbyl, and x is 1, 2, or 3. The magnesium chloride component may be thermally treated at a temperature greater than 100 C for at least 30 minutes before or after introduction of the chlorinating agent and titanium species to the heterogeneous procatalyst. The heterogeneous procatalyst having the thermally treated magnesium chloride exhibits improved average molecular weight capability. Processes for producing the heterogeneous procatalyst and processes for producing ethylene-based polymers utilizing the heterogeneous procatalyst are also disclosed.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: January 2, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Mingzhe Yu, David Gordon Barton, Kurt F. Hirsekorn, Sadeka Onam, Peter N. Nickias, Andrew T. Heitsch, Thomas H. Peterson