Patents Assigned to Duke University
  • Patent number: 10788532
    Abstract: Embedded processor-based self-test and diagnosis using the compressed test data is described for ICs having on-chip memory. Techniques for compressing the test data before the compressed test data is transferred to a device under test (DUT) are also described. A modified LZ77 algorithm can be used to compress strings of test data in which don't care bits are handled by assigning a value to the don't care bits according to a longest match in the window as the data is being encoded. The compressed test data can be decompressed at the DUT using a software program transferred by the automated test equipment (ATE) to the DUT with the compressed test data. Decompression and diagnostics can be carried out at the DUT using an embedded processor and the on-chip memory. Results from the diagnostics can be read by the ATE.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: September 29, 2020
    Assignee: DUKE UNIVERSITY
    Inventors: Sergej Deutsch, Krishnendu Chakrabarty
  • Patent number: 10775429
    Abstract: Monolithic three-dimensional integration can achieve higher device density compared to 3D integration using through-silicon vias. A test solution for M3D integrated circuits (ICs) is based on dedicated test layers inserted between functional layers. A structure includes a first functional layer having first functional components of the IC with first test scan chains and a second functional layer having second functional components of the IC with second test scan chains. A dedicated test layer is located between the first functional layer and the second functional layer. The test layer includes an interface register controlling signals from a testing module to one of the first test scan chains and the second test scan chains, and an instruction register connected to the interface register. The instruction register processes testing instructions from the testing module. Inter-layer vias connect the first functional components, the second functional components, and the testing module through the test layer.
    Type: Grant
    Filed: November 2, 2017
    Date of Patent: September 15, 2020
    Assignees: Marvell Asia Pte., Ltd., Duke University
    Inventors: Sukeshwar Kannan, Abhishek Koneru, Krishnendu Chakrabarty
  • Patent number: 10776544
    Abstract: A computer-implemented method, system and a computer readable medium storing executable instructions for optimizing a quantum circuit are disclosed. The computer-implemented method includes receiving one or more parameters for simulation of evolution of at least one quantum state of a chemical entity to be simulated; generating a quantum circuit for the simulation; performing one or more operations to minimize quantum resources to be used for the generated quantum circuit based on the one or more parameters; and placing quantum resources among one or more elementary logical units (ELUs) based on any one or more of: frequency of occurrence of the quantum resources in the generated quantum circuit, order of occurrence of the quantum resources in the generated quantum circuit, connectivity parameters between one or more quantum resources, efficiency of gates between specific quantum resources, quality of gates between specific quantum resources or a combination thereof.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: September 15, 2020
    Assignees: IonQ, Inc., Duke University
    Inventors: Conor Delaney, Jungsang Kim, Yunseong Nam
  • Patent number: 10773084
    Abstract: Systems and methods for stimulation of neurological tissue generate stimulation trains with temporal patterns of stimulation, in which the interval between electrical pulses (the inter-pulse intervals) changes or varies over time. Compared to conventional continuous, high rate pulse trains having regular (i.e., constant) inter-pulse intervals, the non-regular (i.e., not constant) pulse patterns or trains that embody features of the invention provide a lower average frequency.
    Type: Grant
    Filed: February 20, 2017
    Date of Patent: September 15, 2020
    Assignee: Duke University
    Inventors: Warren M. Grill, David T. Brocker
  • Publication number: 20200283727
    Abstract: Provided herein are methods of expanding B cells, and in particularly B10 cells capable of producing IL-10, ex vivo. The methods include incubation of harvested B cells in the presence of IL-21. Compositions comprising the ex vivo expanded B cells and methods of using the expanded B cell-containing compositions to treat diseases or conditions are also provided. Methods of assessing B10 cell function in a subject are also provided.
    Type: Application
    Filed: March 20, 2020
    Publication date: September 10, 2020
    Applicant: DUKE UNIVERSITY
    Inventors: Thomas F. Tedder, Ayumi Yoshizaki, Tomomitsu Miyagaki, Evgueni Kountikov, Jonathan C. Poe
  • Publication number: 20200282056
    Abstract: A phosphor-containing drug activator and suspension thereof are provided. The suspension at least includes two or more phosphors capable of emitting ultraviolet and visible light upon interaction with x-rays. The two or more phosphors include Zn2SiO4:M12+ and (3Ca3 (PO4)2Ca(F, Cl)2:Sb3*, Mn2+) at a ratio NP-200:GTP-4300 of from 1:10 to 10:1, and each of the two phosphors have an ethylene cellulose coating and/or a diamond-like carbon coating. The suspension further includes a pharmaceutically acceptable carrier.
    Type: Application
    Filed: February 2, 2017
    Publication date: September 10, 2020
    Applicants: IMMUNOLIGHT, LLC, DUKE UNIVERSITY
    Inventors: Harold WALDER, Frederic A. BOURKE, JR., Zakaryae FATHI, Wayne BEYER, Mark OLDHAM, Justus ADAMSON, Michael NOLAN
  • Publication number: 20200283773
    Abstract: Provided herein are compositions including aptamers capable of binding to and/or inhibiting the activity of nucleolin. Methods of treating cancer in a subject by administering such compositions are also provided.
    Type: Application
    Filed: September 10, 2018
    Publication date: September 10, 2020
    Applicant: Duke University
    Inventors: Bruce A. Sullenger, Michael Goldstein, Elizabeth D. Pratico, Michael Kastan, Bethany Gray
  • Patent number: 10755913
    Abstract: A package-level, integrated high-vacuum ion-chip enclosure having improved thermal characteristics is disclosed. Enclosures in accordance with the present invention include first and second chambers that are located on opposite sides of a chip carrier, where the chambers are fluidically coupled via a conduit through the chip carrier. The ion trap is located in the first chamber and disposed on the chip carrier. A source for generating an atomic flux is located in the second chamber. The separation of the source and ion trap in different chambers affords thermal isolation between them, while the conduit between the chambers enables the ion trap to receive the atomic flux.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: August 25, 2020
    Assignee: Duke University
    Inventors: Jungsang Kim, Kai Hudek, Geert Vrijsen, Robert Spivey, Peter Maunz
  • Patent number: 10748451
    Abstract: Systems and methods for generating three-dimensional fluid flow simulations from two-dimensional (2D) image data are provided. Data is segmented from 2D images of a sample having a biological structure with fluid flow therethrough. Three-dimensional (3D) geometries are generated from the segmented data, and then a 3D reconstruction of the biological structure is generated from the 3D geometries. This 3D geometric computational analysis tool can be used to evaluate fluid dynamics and hemodynamics in the context of the structure anatomy and geometry.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: August 18, 2020
    Assignees: DUKE UNIVERSITY, THE BRIGHAM AND WOMEN'S HOSPITAL, INC.
    Inventors: Amanda Randles, Jane Leopold
  • Patent number: 10745714
    Abstract: Disclosed herein are Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas) 9-based system related compositions and methods of using said CRISPR/Cas9-based system related compositions for altering gene expression and genome engineering. Also disclosed herein are compositions and methods of using said compositions for altering gene expression and genome engineering in muscle, such as skeletal muscle and cardiac muscle.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: August 18, 2020
    Assignee: Duke University
    Inventors: Charles A. Gersbach, Isaac B. Hilton, Pablo Perez-Pinera, Ami M. Kabadi, Pratiksha I. Thakore, David G. Ousterout, Joshua B. Black
  • Patent number: 10744170
    Abstract: Human clinical use of a chimeric poliovirus construct has demonstrated excellent anti-tumor effect. Combination with immune checkpoint inhibitors increases the anti-tumor effect. Tumors of different types are susceptible to the combination treatment, including but not limited to melanoma, glioglastoma, renal cell carcinoma, prostate cancer, breast cancer, lung cancer, medulloblastoma, and colorectal cancer.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: August 18, 2020
    Assignee: Duke University
    Inventors: Darell D. Bigner, Matthias Gromeier, Smita Nair, Vidyalakshmi Chandramohan
  • Patent number: 10744171
    Abstract: Human clinical use of a chimeric poliovirus construct has demonstrated excellent anti-tumor effect. Sequential treatment with the virus construct followed by chemotherapy drugs increases the anti-tumor effect. Tumors of different types are susceptible to the combination treatment, including but not limited to melanoma, glioblastoma, renal cell carcinoma, prostate cancer, breast cancer, lung cancer, medulloblastoma, and colorectal cancer.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: August 18, 2020
    Assignee: Duke University
    Inventors: Darell D. Bigner, Matthias Gromeier, Annick Desjardins, Henry S. Friedman, Allan H. Friedman, John H. Sampson
  • Patent number: 10744328
    Abstract: Systems and methods for stimulation of neurological tissue apply a stimulation waveform that is derived by a developed genetic algorithm (GA), which may be coupled to a computational model of extracellular stimulation of a mammalian myelinated axon. The waveform is optimized for energy efficiency.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: August 18, 2020
    Assignee: Duke University
    Inventors: Warren M. Grill, Amorn Wongsarnpigoon
  • Publication number: 20200246452
    Abstract: The present invention relates to compositions, methods, and kits for eliciting an immune response to at least one CMV antigen expressed by a cancer cell, in particular for treating and preventing cancer. CMV determination methods, compositions, and kits also are provided.
    Type: Application
    Filed: March 18, 2020
    Publication date: August 6, 2020
    Applicant: Duke University
    Inventors: John H Sampson, Duane A Mitchell
  • Patent number: 10732221
    Abstract: A post-fabrication debug and on-line error checking framework for 2D- and 3D-ICs with integrated memories is described. A design-for-debug (DfD) architecture can include, for an IC with on-chip memory, a debug module connected to a functional bus of the IC. The debug module receives trace data for an interval, generates compact signatures based on the received data, and compares these signatures to expected signatures. Intervals containing erroneous trace data can be identified by the debug module and stored in on-chip memory. A single iteration of signal tracing for debug testing between automated test equipment and the IC is possible.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: August 4, 2020
    Assignee: DUKE UNIVERSITY
    Inventors: Sergej Deutsch, Krishnendu Chakrabarty
  • Patent number: 10730947
    Abstract: The present invention relates to bispecific molecules that are capable of localizing an immune effector cell that expresses an activating receptor to a virally infected cell, so as to thereby facilitate the killing of the virally infected cell. In a preferred embodiment, such localization is accomplished using bispecific molecules that are immunoreactive with an activating receptor of an immune effector cell and to an antigen expressed by a cell infected with a virus wherein the antigen is detectably present on the cell infected with the virus at a level that is greater than the level at which the antigen is detected on the virus by the bispecific molecules, and to the use of such bispecific molecules in the treatment of latent viral infections.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: August 4, 2020
    Assignees: MacroGenics, Inc., Duke University
    Inventors: Scott Koenig, Leslie S. Johnson, Chia-Ying Kao Lam, Liqin Liu, Jeffrey Lee Nordstrom, Barton F. Haynes, Guido Ferrari
  • Publication number: 20200239872
    Abstract: Provided herein is an antigen display library for detecting antibodies produced by an individual; and methods of using the antigen display library to generate an antibody signature, the method comprising contacting a biological sample containing antibodies from an individual with the antigen display library, isolating phage clones displaying antigenic epitopes recognized by antibody in the sample, and identifying the antigenic epitopes that were recognized by antibody in the sample. Also provided are kits for generating an antibody signature comprising the antigen display library, a substrate for isolating phage clones bound by antibody, and may further comprise reagents useful for generating the antibody signature.
    Type: Application
    Filed: March 13, 2018
    Publication date: July 30, 2020
    Applicant: Duke University
    Inventors: Thomas F. TEDDER, Evgueni KOUNTIKOV
  • Patent number: 10725280
    Abstract: A multiscale telescopic imaging system is disclosed. The system includes an objective lens, having a wide field of view, which forms an intermediate image of a scene at a substantially spherical image surface. A plurality of microcameras in a microcamera array relay image portions of the intermediate image onto their respective focal-plane arrays, while simultaneously correcting at least one localized aberration in their respective image portions. The microcameras in the microcamera array are arranged such that the fields of view of adjacent microcameras overlap enabling field points of the intermediate image to be relayed by multiple microcameras. The microcamera array and objective lens are arranged such that light from the scene can reach the objective lens while mitigating deleterious effects such as obscuration and vignetting.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: July 28, 2020
    Assignee: Duke University
    Inventors: David Jones Brady, Jungsang Kim, Daniel Marks, Hui Seong Son
  • Patent number: 10723024
    Abstract: Specialized robot motion planning hardware and methods of making and using same are provided. A robot-specific hardware can be designed using a tool that receives a robot description comprising a collision geometry of a robot, degrees of freedom for each joint of the robot, and joint limits of the robot; receives a scenario description; generates a probabilistic roadmap (PRM) using the robot description and the scenario description; and for each edge of PRM, produces a collision detection unit comprising a circuit indicating all parts of obstacles that collide with that edge. The hardware is implemented as parallel collision detection units that provide collision detection results used to remove edges from the PRM that is searched to find a path to a goal position.
    Type: Grant
    Filed: January 5, 2016
    Date of Patent: July 28, 2020
    Assignee: DUKE UNIVERSITY
    Inventors: George D. Konidaris, Daniel J. Sorin
  • Patent number: 10722708
    Abstract: The present invention relates to a neuromodulation apparatus and methods of using the neuromodulation apparatus for treating bladder dysfunction.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: July 28, 2020
    Assignee: Duke University
    Inventors: Warren M. Grill, James A. Hokanson, Christopher L. Langdale