Patents Assigned to EMULATE, Inc.
  • Patent number: 12098352
    Abstract: An in vitro microfluidic “organ-on-chip” device is described herein that mimics the structure and at least one function of specific areas of the epithelial system in vivo. In particular, a stem cell-based Lung-on-Chip is described. This in vitro microfluidic system can be used for modeling differentiation of cells on-chip into lung cells, e.g., a lung (Lung-On-Chip), bronchial (Airway-On-Chip; small-Airway-On-Chip), alveolar sac (Alveolar-On-Chip), etc., for use in modeling disease states of derived tissue, i.e. as healthy, pre-disease and diseased tissues. Additionally, stem cells under differentiation protocols for deriving (producing) differentiated lung cells off-chips may be seeded onto microfluidic devices at any desired point during the in vitro differentiation pathway for further differentiation on-chip or placed on-chip before, during or after terminal differentiation.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: September 24, 2024
    Assignee: EMULATE, INC.
    Inventors: Janna Nawroth, Riccardo Barrile, David Conegliano, Remi Villenave, Carolina Lucchesi, Justin Nguyen, Antonio Varone, Catherine Karalis, Geraldine Hamilton
  • Patent number: 12098356
    Abstract: The invention generally relates to a microfluidic platforms or “chips” for testing and conducting experiments on the International Space Station (ISS). More specifically, microfluidic Brain-On-Chip, comprising neuronal and vascular endothelial cells, will be analyzed in both healthy and inflamed states to assess how the circumstances of space travel affect the human brain.
    Type: Grant
    Filed: September 27, 2022
    Date of Patent: September 24, 2024
    Assignee: EMULATE, INC.
    Inventors: Christopher David Hinojosa, Josiah Sliz, Iosif Pediaditakis, Sonalee Barthakur
  • Patent number: 12091650
    Abstract: The invention relates to culturing brain endothelial cells, and optionally astrocytes and neurons in a fluidic device under conditions whereby the cells mimic the structure and function of the blood brain barrier. Culture of such cells in a microfluidic device, whether alone or in combination with other cells, drives maturation and/or differentiation further than existing systems.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: September 17, 2024
    Assignee: EMULATE, INC.
    Inventors: S. Jordan Kerns, Norman Wen, Carolina Lucchesi, Christopher David Hinojosa, Jacob Fraser, Geraldine Hamilton, Gad Vatine, Samuel Sances, Clive Svendsen, Daniel Levner, Dhruv Sareen
  • Patent number: 12070746
    Abstract: Microfluidic “organ-on-a-chip” devices have been developed with the aim to replicate human tissues in vitro. However, there is no option to quantitatively monitor biological processes that take place within the chip, over time. Destructive methods in order to analyze, tissue formation, gene expression, protein secretion etc. require the harvest of the “tissue” at a certain time point. Described herein are methods and compositions for non-destructive molecular imaging methods and systems in order to quantitatively monitor specific biological processes, over time, within the chip, without the need to harvest.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: August 27, 2024
    Assignees: EMULATE, Inc., CEDARS-SINAI MEDICAL CENTER
    Inventors: Dan Gazit, Gadi Pelled, Zulma Gazit, Dmitriy Sheyn, Christopher David Hinojosa, Norman Wen, Geraldine Hamilton
  • Patent number: 12036548
    Abstract: The present invention relates to microfluidic fluidic devices, methods and systems for use in identifying epigenetic signatures in a range of sample types, e.g., cells established on a “chip” (including but not limited to single cell samples, cell populations, C cell layers and whole tissues, such as a biopsy), immune cells, cfDNA, exosomes, and the like. More specifically, in some embodiments, a microfluidic chip containing a sample is contacted with a test compound (e.g. DNA altering test compound, an RNA expression altering test compound, etc.) for use in providing a diagnostic epigenetic signature for that type of sample (or cell type) exposed to that specific test compound. In some embodiments, after contact with a test compound, effluent fluids (e.g. fluids exiting the “chip” that contacted the cells) are derived for testing as a “virtual blood draw.
    Type: Grant
    Filed: August 19, 2020
    Date of Patent: July 16, 2024
    Assignee: EMULATE, INC.
    Inventors: Catherine Karalis, Ville Kujala
  • Patent number: 12019083
    Abstract: The present invention is related to the field of microfluidics and compound distribution within microfluidic devices and their associated systems. In one embodiment, present invention aims to solve the problem of molecule and compound absorbency into the materials making up laboratory equipment, microfluidic devices and their related infrastructure, without unduly restricting gas transport within microfluidic devices.
    Type: Grant
    Filed: June 7, 2022
    Date of Patent: June 25, 2024
    Assignee: EMULATE, INC.
    Inventors: Josiah Sliz, Daniel Levner, Brian Zuckerman, Norman Wen, Jonathan Rubins, Tanvi Shroff, Christopher David Hinojosa, Grace Ahn, Victor Antontsev, Jefferson Puerta, David Conegliano, S. Jordan Kerns
  • Patent number: 12018284
    Abstract: An in vitro microfluidic intestine on-chip is described herein that mimics the structure and at least one function of specific areas of the gastrointestinal system in vivo. In particular, a multicellular, layered, microfluidic intestinal cell culture, which is some embodiments is derived from patient's enteroids-derived cells, is described comprising L cells, allowing for interactions between L cells and gastrointestinal epithelial cells, endothelial cells and immune cells. This in vitro microfluidic system can be used for modeling inflammatory gastrointestinal autoimmune tissue, e.g., diabetes, obesity, intestinal insufficiency and other inflammatory gastrointestinal disorders. These multicellular-layered microfluidic intestine on-chips further allow for comparisons between types of gastrointestinal tissues, e.g., small intestinal duodenum, small intestinal jejunum, small intestinal ileum, large intestinal colon, etc., and between disease states of gastrointestinal tissue, i.e.
    Type: Grant
    Filed: November 9, 2022
    Date of Patent: June 25, 2024
    Assignee: EMULATE, INC.
    Inventors: Athanasia Apostolou, Antonio Varone, Magdalena Kasendra, Raymond Luc
  • Patent number: 11999932
    Abstract: The present invention is related to the field of fluidic devices, and in particular, microfluidic cell culture systems. The present invention provides pumping, recirculation and sampling for a microfluidic device or devices. The present invention provides solutions to the control of microfluidics for both terrestrial and space applications, including the control over the movement of fluids in zero gravity or microgravity.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: June 4, 2024
    Assignee: EMULATE, INC.
    Inventors: Christopher David Hinojosa, Grace Ahn
  • Patent number: 11970680
    Abstract: The invention generally relates to a microfluidic platforms or “chips” for testing and understanding cancer, and, more specifically, for understanding the factors that contribute to cancer invading tissues and causing metastases. Tumor cells are grown on microfluidic devices with other non-cancerous tissues under conditions that simulate tumor invasion. The interaction with immune cells can be tested to inhibit this activity by linking a cancer chip to a lymph chip.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: April 30, 2024
    Assignee: EMULATE, Inc.
    Inventors: Geraldine A. Hamilton, Norman Wen, Catherine Karalis, Antonio Varone, Daniel Levner, Riccardo Barrile
  • Patent number: 11952592
    Abstract: Organs-on-chips are microfluidic devices for culturing living cells in micrometer sized chambers in order to model physiological functions of tissues and organs. Engineered patterning and continuous fluid flow in these devices has allowed culturing of intestinal cells bearing physiologically relevant features and sustained exposure to bacteria while maintaining cellular viability, thereby allowing study of inflammatory bowl diseases. However, existing intestinal cells do not possess all physiologically relevant subtypes, do not possess the repertoire of genetic variations, or allow for study of other important cellular actors such as immune cells. Use of iPSC-derived epithelium, including IBD patient-specific cells, allows for superior disease modeling by capturing the multi-faceted nature of the disease.
    Type: Grant
    Filed: February 23, 2022
    Date of Patent: April 9, 2024
    Assignee: EMULATE, INC.
    Inventors: S. Jordan Kerns, Norman Wen, Carol Lucchesi, Christopher David Hinojosa, Jacob Fraser, Jefferson Puerta, Geraldine Hamilton, Robert Barrett, Clive Svendsen, Daniel Levner, Stephen R Targan, Michael Workman, Dhruv Sareen, Uthra Rajamani, Magdalena Kasendra
  • Patent number: 11920114
    Abstract: A culture module is contemplated that allows the perfusion and optionally mechanical actuation of one or more microfluidic devices, such as organ-on-a-chip microfluidic devices comprising cells that mimic at least one function of an organ in the body. A method for pressure control is contemplated to allow the control of flow rate (while perfusing cells) despite limitations of common pressure regulators. The method for pressure control allows for perfusion of a microfluidic device, such as an organ on a chip microfluidic device comprising cells that mimic cells in an organ in the body, that is detachably linked with said assembly, so that fluid enters ports of the microfluidic device from a fluid reservoir, optionally without tubing, at a controllable flow rate.
    Type: Grant
    Filed: February 16, 2021
    Date of Patent: March 5, 2024
    Assignee: EMULATE, INC.
    Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Jose Fernandez-Alcon
  • Patent number: 11859165
    Abstract: A microfluidic device is contemplated comprising an open-top cavity with structural anchors on the vertical wall surfaces that serve to prevent gel shrinkage-induced delamination, a porous membrane (optionally stretchable) positioned in the middle over a microfluidic channel(s). The device is particularly suited to the growth of cells mimicking dermal layers.
    Type: Grant
    Filed: January 17, 2023
    Date of Patent: January 2, 2024
    Assignee: EMULATE, INC.
    Inventors: Daniel Levner, Christopher David Hinojosa, Norman Wen, Antonio Varone, Justin Nguyen, Lina Williamson, S. Jordan Kerns, Catherine Karalis, Geraldine Hamilton, Carol Lucchesi
  • Patent number: 11841361
    Abstract: The present invention relates to microfluidic fluidic devices, methods and systems as microfluidic kidney on-chips, e.g. human Proximal Tubule-Kidney-Chip, Glomerulus (Kidney)-Chip, Collecting Duct (Kidney)-Chip. Devices, methods and systems are described for drug testing including drug transport and renal clearance. Further, such devices, methods and systems are used for determining drug-drug interactions and their effect upon renal transporter functions. Importantly, they may be used for pre-clinical and clinical drug development for treating kidney diseases and for personalized medicine.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: December 12, 2023
    Assignee: EMULATE, INC.
    Inventors: Kyung-Jin Jang, Janey Ronxhi, Josiah Sliz, Sauveur Jeanty, Sushma Jadalannagari, Ananth Nookala, Hyoungshin Park
  • Patent number: 11833512
    Abstract: An in vitro microfluidic “organ-on-chip” is described herein that mimics the structure and at least one function of specific areas of the epithelial system in vivo. In particular, a multicellular, layered, microfluidic culture is described, allowing for interactions between lamina propria-derived cells and the associated tissue specific epithelial cells and endothelial cells. This in vitro microfluidic system can be used for modeling inflammatory tissue, e.g., autoimmune disorders involving epithelia and diseases involving epithelial layers. These multicellular, layered microfluidic “organ-on-chip”, e.g. “epithelia-on-chip” further allow for comparisons between types of epithelia tissues, e.g., lung (Lung-On-Chip), bronchial (Airway-On-Chip), skin (Skin-On-Chip), cervix (Cervix-On-Chip), blood brain barrier (BBB-On-Chip), etc., in additional to neurovascular tissue, (Brain-On-Chip), and between different disease states of tissue, i.e. healthy, pre-disease and diseased areas.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: December 5, 2023
    Assignee: EMULATE, INC.
    Inventors: S. Jordan Kerns, Riccardo Barrile, Geraldine Hamilton, Catherine Karalis, Daniel Levner, Carolina Lucchesi, Antonio Varone, Remi Villenave
  • Patent number: 11834641
    Abstract: A culture module is contemplated that allows the perfusion and optionally mechanical actuation of one or more microfluidic devices, such as organ-on-a-chip microfluidic devices comprising cells that mimic at least one function of an organ in the body. A method for pressure control is contemplated to allow the control of flow rate (while perfusing cells) despite limitations of common pressure regulators. The method for pressure control allows for perfusion of a microfluidic device, such as an organ on a chip microfluidic device comprising cells that mimic cells in an organ in the body, that is detachably linked with said assembly, so that fluid enters ports of the microfluidic device from a fluid reservoir, optionally without tubing, at a controllable flow rate.
    Type: Grant
    Filed: September 22, 2022
    Date of Patent: December 5, 2023
    Assignee: EMULATE, INC.
    Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Jose Fernandez-Alcon
  • Patent number: 11820966
    Abstract: A perfusion manifold assembly is described that allows for perfusion of a microfluidic device, such as an organ on a chip microfluidic device comprising cells that mimic cells in an organ in the body, that is detachably linked with said assembly so that fluid enters ports of the microfluidic device from a fluid reservoir, optionally without tubing, at a controllable flow rate. A culture module is contemplated that allows the perfusion and optionally mechanical actuation of one or more microfluidic devices, such as organ-on-a-chip microfluidic devices comprising cells that mimic at least one function of an organ in the body.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: November 21, 2023
    Assignee: EMULATE, INC.
    Inventors: Christopher David Hinojosa, Guy Robert Thompson, II, Joshua Gomes, Jacob Freake, Doug Sabin
  • Patent number: 11788044
    Abstract: The present invention contemplates compositions, devices and methods of simulating biological fluids in a fluidic device, including but not limited to a microfluidic chip. In one embodiment, fluid comprising a colloid under flow in a microfluidic chip has a fluid density or viscosity similar to a bodily fluid, e.g. blood, lymph, lung fluid, or the like. In one embodiment, a fluid is provided as a Theologically biomimetic blood surrogate or substitute for simulating physiological shear stress and cell dynamics in fluidic device, including but not limited to immune cells.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: October 17, 2023
    Assignee: EMULATE, Inc.
    Inventors: Antonio Varone, Magdalena Kasendra, Carolina Lucchesi, S. Jordan Kerns, Riccardo Barrile, Sonalee Barthakur
  • Patent number: 11733234
    Abstract: Compositions, devices and methods are described for improving adhesion, attachment, and/or differentiation of cells in a microfluidic device or chip. In one embodiment, one or more ECM proteins are covalently coupled to the surface of a microchannel of a microfluidic device. The microfluidic devices can be stored or used immediately for culture and/or support of living cells such as mammalian cells, and/or for simulating a function of a tissue, e.g., a liver tissue, muscle tissue, etc. Extended adhesion and viability with sustained function over time is observed.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: August 22, 2023
    Assignee: EMULATE, INC.
    Inventors: Daniel Levner, Kyung Jin Jang, Jacob Fraser, S. Jordan Kerns, Antonio Varone, Dongeun Huh
  • Patent number: 11725190
    Abstract: The present invention relates to microfluidic fluidic devices, methods and systems as microfluidic kidney on-chips, e.g. human Proximal Tubule-Kidney-Chip, Glomerulus (Kidney)-Chip, Collecting Duct (Kidney)-Chip. Devices, methods and systems are described for drug testing including drug transport and renal clearance. Further, such devices, methods and systems are used for determining drug-drug interactions and their effect upon renal transporter functions. Importantly, they may be used for pre-clinical and clinical drug development for treating kidney diseases and for personalized medicine.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: August 15, 2023
    Assignee: EMULATE, INC.
    Inventors: Kyung-Jin Jang, Hyoungshin Park, Sauveur Jeanty, Janey Ronxhi, Sushma Jadalannagari, Geraldine A Hamilton, Catherine Karalis
  • Patent number: 11697792
    Abstract: The invention generally relates to a microfluidic platforms or “chips” for testing and conducting experiments on the International Space Station (ISS). More specifically, microfluidic Brain-On-Chip, comprising neuronal and vascular endothelial cells, will be analyzed in both healthy and inflamed states to assess how the circumstances of space travel affect the human brain.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: July 11, 2023
    Assignee: EMULATE, INC.
    Inventors: Christopher David Hinojosa, Josiah Sliz, Iosif Pediaditakis, Sonalee Barthakur