Patents Assigned to EMULATE, Inc.
-
Patent number: 11067571Abstract: This invention is in the field of surface modification. In particular, the invention relates to the surface modification of microfluidic devices to alter surface hydrophobicity characteristics.Type: GrantFiled: January 10, 2020Date of Patent: July 20, 2021Assignee: EMULATE, INC.Inventors: Daniel Levner, S. Jordan Kerns, Jefferson Puerta
-
Patent number: 11065620Abstract: Methods of removing bubbles from a microfluidic device are described where the flow is not stopped. Methods are described that combine pressure and flow to remove bubbles from a microfluidic device. Bubbles can be removed even where the device is made of a polymer that is largely gas impermeable.Type: GrantFiled: July 12, 2017Date of Patent: July 20, 2021Assignee: Emulate, Inc.Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Kyung Jin Jang
-
Patent number: 11059041Abstract: An in vitro microfluidic “organ-on-chip” is described herein that mimics the structure and at least one function of specific areas of the epithelial system in vivo. In particular, a multicellular, layered, microfluidic culture is described, allowing for interactions between lamina propria-derived cells and the associated tissue specific epithelial cells and endothelial cells. This in vitro microfluidic system can be used for modeling inflammatory tissue, e.g., autoimmune disorders involving epithelia and diseases involving epithelial layers. These multicellular, layered microfluidic “organ-on-chip”, e.g. “epithelia-on-chip” further allow for comparisons between types of epithelia tissues, e.g., lung (Lung-On-Chip), bronchial (Airway-On-Chip), skin (Skin-On-Chip), cervix (Cervix-On-Chip), blood brain barrier (BBB-On-Chip), etc., in additional to neurovascular tissue, (Brain-On-Chip), and between different disease states of tissue, i.e. healthy, pre-disease and diseased areas.Type: GrantFiled: September 17, 2020Date of Patent: July 13, 2021Assignee: Emulate, Inc.Inventors: S. Jordan Kerns, Riccardo Barrile, Geraldine Hamilton, Catherine Karalis, Daniel Levner, Carolina Lucchesi, Antonio Varone, Remi Villenave
-
Patent number: 11001795Abstract: An in vitro microfluidic gut-on-chip is described herein that mimics the structure and at least one function of specific areas of the gastrointestinal system in vivo. In particular, a multicellular, layered, microfluidic culture is described, allowing for interactions between lamina propria-derived cells and gastrointestinal epithelial cells and endothelial cells. This in vitro microfluidic system can be used for modeling inflammatory gastrointestinal tissue, e.g., Crohn's disease, colitis and other inflammatory gastrointestinal disorders. These multicellular, layered microfluidic gut-on-chip further allow for comparisons between types of gastrointestinal tissues, e.g., small intestinal deuodejeum, small intestinal ileium, large intestinal colon, etc., and between disease states of gastrointestinal tissue, i.e. healthy, pre-disease and diseased areas.Type: GrantFiled: November 21, 2017Date of Patent: May 11, 2021Assignee: Emulate, Inc.Inventors: S. Jordan Kerns, Jenifer Obrigewitch, Michael Salmon, Magdalena Kasendra, Benjamin Richards Umiker
-
Patent number: 10988722Abstract: The invention relates to a perfusion manifold assembly that allows for perfusion of a microfluidic device, such as an organ on a chip microfluidic device comprising cells that mimic cells in an organ in the body, that is detachably linked with an assembly so that fluid enters ports of the microfluidic device from a fluid reservoir, optionally without tubing, at a controllable flow rate.Type: GrantFiled: December 19, 2018Date of Patent: April 27, 2021Assignee: EMULATE, Inc.Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Guy Robert Thompson, II, Petrus Wilhelmus Martinus van Ruijven, Matthew Daniel Solomon, Christian Alexander Potzner, Patrick Sean Tuohy, Joshua Gomes, Norman Wen, Jacob Freake, Doug Sabin
-
Patent number: 10988721Abstract: A culture module is contemplated that allows the perfusion and optionally mechanical actuation of one or more microfluidic devices, such as organ-on-a-chip microfluidic devices comprising cells that mimic at least one function of an organ in the body. A method for pressure control is contemplated to allow the control of flow rate (while perfusing cells) despite limitations of common pressure regulators. The method for pressure control allows for perfusion of a microfluidic device, such as an organ on a chip microfluidic device comprising cells that mimic cells in an organ in the body, that is detachably linked with said assembly, so that fluid enters ports of the microfluidic device from a fluid reservoir, optionally without tubing, at a controllable flow rate.Type: GrantFiled: October 5, 2018Date of Patent: April 27, 2021Assignee: EMULATE, Inc.Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Jose Fernandez-Alcon
-
Patent number: 10989721Abstract: Compositions, devices and methods are described for preventing, reducing, controlling or delaying adhesion, adsorption, surface-mediated clot formation, or coagulation in a microfluidic device or chip. In one embodiment, blood (or other fluid with blood components) that contains anticoagulant is introduced into a microfluidic device comprising one or more additive channels containing one or more reagents that will re-activate the native coagulation cascade in the blood that makes contact with it “on-chip” before moving into the experimental region of the chip.Type: GrantFiled: July 12, 2017Date of Patent: April 27, 2021Assignee: EMULATE, Inc.Inventors: Daniel Levner, Christopher David Hinojosa, Norman Wen, Jacob Fraser, Justin Nguyen, Riccardo Barrile, Geraldine Hamilton, Catherine Karalis, Hyoungshin Park, Antonio Varone, Andries Van der Meer, Monicah Otieno, David Conegliano
-
Patent number: 10974242Abstract: Methods of removing bubbles from a microfluidic device are described where the flow is not stopped. Methods are described that combine pressure and flow to remove bubbles from a microfluidic device. Bubbles can be removed even where the device is made of a polymer that is largely gas impermeable.Type: GrantFiled: July 12, 2017Date of Patent: April 13, 2021Assignee: EMULATE, INC.Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Kyung Jin Jang
-
Patent number: 10961496Abstract: A microfluidic device is contemplated comprising an open-top cavity with structural anchors on the vertical wall surfaces that serve to prevent gel shrinkage-induced delamination, a porous membrane (optionally stretchable) positioned in the middle over a microfluidic channel(s). The device is particularly suited to the growth of cells mimicking dermal layers.Type: GrantFiled: December 2, 2016Date of Patent: March 30, 2021Assignee: EMULATE, INC.Inventors: Daniel Levner, Christopher David Hinojosa, Norman Wen, Antonio Varone, Justin Nguyen, Lina Williamson, S. Jordan Kerns, Catherine Karalis, Geraldine Hamilton, Carol Lucchesi
-
Patent number: 10913063Abstract: Methods of removing bubbles from a microfluidic device are described where the flow is not stopped. Methods are described that combine pressure and flow to remove bubbles from a microfluidic device. Bubbles can be removed even where the device is made of a polymer that is largely gas impermeable.Type: GrantFiled: July 12, 2017Date of Patent: February 9, 2021Assignee: Emulate, Inc.Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Kyung Jin Jang
-
Patent number: 10913924Abstract: A culture module is contemplated that allows the perfusion and optionally mechanical actuation of one or more microfluidic devices, such as organ-on-a-chip microfluidic devices comprising cells that mimic at least one function of an organ in the body. A method for pressure control is contemplated to allow the control of flow rate (while perfusing cells) despite limitations of common pressure regulators. The method for pressure control allows for perfusion of a microfluidic device, such as an organ on a chip microfluidic device comprising cells that mimic cells in an organ in the body, that is detachably linked with said assembly, so that fluid enters ports of the microfluidic device from a fluid reservoir, optionally without tubing, at a controllable flow rate.Type: GrantFiled: October 5, 2018Date of Patent: February 9, 2021Assignee: Emulate, Inc.Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Jose Fernandez-Alcon
-
Patent number: 10908171Abstract: Compositions, devices and methods are described for preventing, reducing, controlling or delaying adhesion, adsorption, surface-mediated clot formation, or coagulation in a microfluidic device or chip. In one embodiment, blood (or other fluid with blood components) that contains anticoagulant is introduced into a microfluidic device comprising one or more additive channels containing one or more reagents that will re-activate the native coagulation cascade in the blood that makes contact with it “on-chip” before moving into the experimental region of the chip.Type: GrantFiled: July 12, 2017Date of Patent: February 2, 2021Assignee: EMULATE, INC.Inventors: Daniel Levner, Christopher David Hinojosa, Norman Wen, Jacob Fraser, Justin Nguyen, Riccardo Barrile, Geraldine Hamilton, Catherine Karalis, Hyoungshin Park, Antonio Varone, Andries Van der Meer, Monicah Otieno, David Conegliano
-
Patent number: 10852311Abstract: Compositions, devices and methods are described for preventing, reducing, controlling or delaying adhesion, adsorption, surface-mediated clot formation, or coagulation in a microfluidic device or chip. In one embodiment, blood (or other fluid with blood components) that contains anticoagulant is introduced into a microfluidic device comprising one or more additive channels containing one or more reagents that will re-activate the native coagulation cascade in the blood that makes contact with it “on-chip” before moving into the experimental region of the chip.Type: GrantFiled: July 12, 2017Date of Patent: December 1, 2020Assignee: Emulate, Inc.Inventors: Daniel Levner, Christopher David Hinojosa, Norman Wen, Jacob Fraser, Justin Nguyen, Riccardo Barrile, Geraldine Hamilton, Catherine Karalis, Hyoungshin Park, Antonio Varone, Andries Van der Meer, Monicah Otieno, David Conegliano
-
Patent number: 10828638Abstract: An in vitro microfluidic “organ-on-chip” is described herein that mimics the structure and at least one function of specific areas of the epithelial system in vivo. In particular, a multicellular, layered, microfluidic culture is described, allowing for interactions between lamina propria-derived cells and the associated tissue specific epithelial cells and endothelial cells. This in vitro microfluidic system can be used for modeling inflammatory tissue, e.g., autoimmune disorders involving epithelia and diseases involving epithelial layers. These multicellular, layered microfluidic “organ-on-chip”, e.g. “epithelia-on-chip” further allow for comparisons between types of epithelia tissues, e.g., lung (Lung-On-Chip), bronchial (Airway-On-Chip), skin (Skin-On-Chip), cervix (Cervix-On-Chip), blood brain barrier (BBB-On-Chip), etc., in additional to neurovascular tissue, (Brain-On-Chip), and between different disease states of tissue, i.e. healthy, pre-disease and diseased areas.Type: GrantFiled: November 21, 2017Date of Patent: November 10, 2020Assignee: Emulate, Inc.Inventors: S. Jordan Kerns, Riccardo Barrile, Geraldine Hamilton, Catherine Karalis, Daniel Levner, Carolina Lucchesi, Antonio Varone, Remi Villenave
-
Patent number: 10689608Abstract: Drop-to-drop connection schemes are described for putting a microfluidic device in fluidic communication with a fluid source or another microfluidic device, including but not limited to, putting a microfluidic device in fluidic communication with the perfusion manifold assembly.Type: GrantFiled: August 22, 2018Date of Patent: June 23, 2020Assignee: EMULATE, INC.Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Guy Robert Thompson, II, Petrus Wilhelmus Martinus van Ruijven, Matthew Daniel Solomon, Christian Alexander Potzner, Patrick Sean Tuohy
-
Patent number: 10661275Abstract: Methods of removing bubbles from a microfluidic device are described where the flow is not stopped. Methods are described that combine pressure and flow to remove bubbles from a microfluidic device. Bubbles can be removed even where the device is made of a polymer that is largely gas impermeable.Type: GrantFiled: July 12, 2017Date of Patent: May 26, 2020Assignee: EMULATE, INC.Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Kyung Jin Jang
-
Patent number: D888270Type: GrantFiled: March 30, 2018Date of Patent: June 23, 2020Assignee: EMULATE, Inc.Inventors: Guy Robert Thompson, II, Norman Wen, Lewis Rowe
-
Patent number: D888273Type: GrantFiled: January 7, 2019Date of Patent: June 23, 2020Assignee: EMULATE, Inc.Inventors: Guy Robert Thompson, II, Norman Wen, Lewis Rowe
-
Patent number: D888983Type: GrantFiled: August 15, 2019Date of Patent: June 30, 2020Assignee: EMULATE, Inc.Inventors: Christopher David Hinojosa, Joshua Gomes
-
Patent number: D905868Type: GrantFiled: September 20, 2017Date of Patent: December 22, 2020Assignee: EMULATE, Inc.Inventors: Lewis Rowe, Craig Henshaw