Patents Assigned to EMULATE, Inc.
  • Patent number: 11697792
    Abstract: The invention generally relates to a microfluidic platforms or “chips” for testing and conducting experiments on the International Space Station (ISS). More specifically, microfluidic Brain-On-Chip, comprising neuronal and vascular endothelial cells, will be analyzed in both healthy and inflamed states to assess how the circumstances of space travel affect the human brain.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: July 11, 2023
    Assignee: EMULATE, INC.
    Inventors: Christopher David Hinojosa, Josiah Sliz, Iosif Pediaditakis, Sonalee Barthakur
  • Patent number: 11597899
    Abstract: The devices, methods and systems are described for providing controlled amounts of gas, gas pressure and vacuum to microfluidic devices the culturing of cells under flow conditions. The devices, methods, and systems contemplated here may also be used to control the environment surrounding the microfluidic devices; offer user control over experiments comprising microfluidic devices, such as the ability to directly or remotely control experiment conditions; and comprise information aggregation and transmission, such that experimental data may be collected, stored, aggregated and transmitted to users.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: March 7, 2023
    Assignee: EMULATE, INC.
    Inventors: Lewis Rowe, Craig Henshaw, Joshua Gomes, Guy Robert Thompson, II, David James Coon, Christopher David Hinojosa
  • Patent number: 11566231
    Abstract: An in vitro microfluidic intestine on-chip is described herein that mimics the structure and at least one function of specific areas of the gastrointestinal system in vivo. In particular, a multicellular, layered, microfluidic intestinal cell culture, which is some embodiments is derived from patient's enteroids-derived cells, is described comprising L cells, allowing for interactions between L cells and gastrointestinal epithelial cells, endothelial cells and immune cells. This in vitro microfluidic system can be used for modeling inflammatory gastrointestinal autoimmune tissue, e.g., diabetes, obesity, intestinal insufficiency and other inflammatory gastrointestinal disorders. These multicellular-layered microfluidic intestine on-chips further allow for comparisons between types of gastrointestinal tissues, e.g., small intestinal duodenum, small intestinal jejunum, small intestinal ileum, large intestinal colon, etc., and between disease states of gastrointestinal tissue, i.e.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: January 31, 2023
    Assignee: EMULATE, INC.
    Inventors: Athanasia Apostolou, Antonio Varone, Magdalena Kasendra, Raymond Luc
  • Patent number: 11549937
    Abstract: Compositions, devices and methods are described for improving adhesion, attachment, and/or differentiation of cells in a microfluidic device or chip. In one embodiment, one or more ECM proteins are covalently coupled to the surface of a microchannel of a microfluidic device. The microfluidic devices can be stored or used immediately for culture and/or support of living cells such as mammalian cells, and/or for simulating a function of a tissue, e.g., a liver tissue, muscle tissue, etc. Extended adhesion and viability with sustained function over time is observed.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: January 10, 2023
    Assignee: EMULATE, INC.
    Inventors: Daniel Levner, Kyung Jin Jang, Jacob Fraser, S. Jordan Kerns, Antonio Varone, Dongeun Huh
  • Patent number: 11542476
    Abstract: The present invention relates to microfluidic fluidic systems and methods for the in vitro modeling diseases of the lung and small airway. In one embodiment, the invention relates to a system for testing responses of a microfluidic Small Airway-on-Chip infected with one or more infectious agents (e.g. respiratory viruses) as a model of respiratory disease exacerbation (e.g. asthma exacerbation). In one embodiment, this disease model on a microfluidic chip allows for a) the testing of anti-inflammatory and/or anti-viral compounds introduced into the system, as well as b) the monitoring of the participation, recruitment and/or movement of immune cells, including the transmigration of cells. In particular, this system provides, in one embodiment, an in-vitro platform for modeling severe asthma as “Severe Asthma-on-Chip.” In some embodiments, this invention provides a model of viral-induced asthma in humans for use in identifying potentially effective treatments.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: January 3, 2023
    Assignee: EMULATE, INC.
    Inventors: Remi Villenave, Carolina Lucchesi, Justin Nguyen, Catherine Karalis, Geraldine Hamilton, Buket Baddal, Michael Salmon
  • Patent number: 11534753
    Abstract: The present invention relates to microfluidic fluidic devices, methods and systems as microfluidic kidney on-chips, e.g. human Proximal Tubule-Chip.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: December 27, 2022
    Assignee: EMULATE, INC.
    Inventors: Ville Kujala, Hyoungshin Park, Sonalee Barthakur, Sauveur Jeanty, Brian Zuckerman, Josiah Sliz, Tanvi Shroff, Geraldine A Hamilton, Kyung-Jin Jang, Ananth Nookala, Gang Luo, Donald Mckenzie
  • Patent number: 11536714
    Abstract: Compositions, devices and methods are described for improving adhesion, attachment, and/or differentiation of cells in a microfluidic device or chip. In one embodiment, one or more ECM proteins are covalently coupled to the surface of a microchannel of a microfluidic device. The microfluidic devices can be stored or used immediately for culture and/or support of living cells such as mammalian cells, and/or for simulating a function of a tissue, e.g., a liver tissue, muscle tissue, etc. Extended adhesion and viability with sustained function over time is observed.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: December 27, 2022
    Assignee: EMULATE, INC.
    Inventors: Daniel Levner, Kyung Jin Jang, Jacob Fraser, S. Jordan Kerns, Antonio Varone, Dongeun Huh
  • Patent number: 11519903
    Abstract: Compositions, devices and methods are described for improving adhesion, attachment, and/or differentiation of cells in a microfluidic device or chip. In one embodiment, one or more ECM proteins are covalently coupled to the surface of a microchannel of a microfluidic device. The microfluidic devices can be stored or used immediately for culture and/or support of living cells such as mammalian cells, and/or for simulating a function of a tissue, e.g., a liver tissue, muscle tissue, etc. Extended adhesion and viability with sustained function over time is observed.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: December 6, 2022
    Assignee: EMULATE, INC.
    Inventors: Daniel Levner, Kyung Jin Jang, Jacob Fraser, S. Jordan Kerns, Antonio Varone, Dongeun Huh
  • Patent number: 11506653
    Abstract: Compositions, devices and methods are described for improving adhesion, attachment, and/or differentiation of cells in a microfluidic device or chip. In one embodiment, one or more ECM proteins are covalently coupled to the surface of a microchannel of a microfluidic device. The microfluidic devices can be stored or used immediately for culture and/or support of living cells such as mammalian cells, and/or for simulating a function of a tissue, e.g., a liver tissue, muscle tissue, etc. Extended adhesion and viability with sustained function over time is observed.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: November 22, 2022
    Assignee: EMULATE, INC.
    Inventors: Daniel Levner, Kyung Jin Jang, Jacob Fraser, S. Jordan Kerns, Antonio Varone, Dongeun Huh
  • Patent number: 11506652
    Abstract: Compositions, devices and methods are described for improving adhesion, attachment, and/or differentiation of cells in a microfluidic device or chip. In one embodiment, one or more ECM proteins are covalently coupled to the surface of a microchannel of a microfluidic device. The microfluidic devices can be stored or used immediately for culture and/or support of living cells such as mammalian cells, and/or for simulating a function of a tissue, e.g., a liver tissue, muscle tissue, etc. Extended adhesion and viability with sustained function over time is observed.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: November 22, 2022
    Assignee: EMULATE, INC.
    Inventors: Daniel Levner, Kyung JIn Jang, Jacob Fraser, S. Jordan Kerns, Antonio Varone, Dongeun Huh
  • Patent number: 11371000
    Abstract: The invention generally relates to a microfluidic platforms or “chips” for testing and understanding cancer, and, more specifically, for understanding the factors that contribute to cancer invading tissues and causing metastases. Tumor cells are grown on microfluidic devices with other non-cancerous tissues under conditions that simulate tumor invasion. The interaction with immune cells can be tested to inhibit this activity by linking a cancer chip to a lymph chip.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: June 28, 2022
    Assignee: EMULATE, INC.
    Inventors: Geraldine A Hamilton, Norman Wen, Catherine Karalis, Antonio Varone, Daniel Levner, Riccardo Barrile
  • Patent number: 11326149
    Abstract: Organs-on-chips are microfluidic devices for culturing living cells in micrometer sized chambers in order to model physiological functions of tissues and organs. Engineered patterning and continuous fluid flow in these devices has allowed culturing of intestinal cells bearing physiologically relevant features and sustained exposure to bacteria while maintaining cellular viability, thereby allowing study of inflammatory bowl diseases. However, existing intestinal cells do not possess all physiologically relevant subtypes, do not possess the repertoire of genetic variations, or allow for study of other important cellular actors such as immune cells. Use of iPSC-derived epithelium, including IBD patient-specific cells, allows for superior disease modeling by capturing the multi-faceted nature of the disease.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: May 10, 2022
    Assignee: EMULATE, INC.
    Inventors: S. Jordan Kerns, Norman Wen, Carol Lucchesi, Christopher David Hinojosa, Jacob Fraser, Jefferson Puerta, Geraldine Hamilton, Robert Barrett, Clive Svendsen, Daniel Levner, Stephen R Targan, Michael Workman, Dhruv Sareen, Uthra Rajamani, Magdalena Kasendra
  • Patent number: 11248203
    Abstract: A microfluidic device is contemplated comprising an open-top cavity with structural anchors on the vertical wall surfaces that serve to prevent gel shrinkage-induced delamination, a porous membrane (optionally stretchable) positioned in the middle over a microfluidic channel(s). The device is particularly suited to the growth of cells mimicking dermal layers.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: February 15, 2022
    Assignee: EMULATE, INC
    Inventors: Daniel Levner, Christopher David Hinojosa, Norman Wen, Antonio Varone, Justin Nguyen, Lina Williamson, S. Jordan Kerns, Catherine Karalis, Geraldine Hamilton, Carol Lucchesi
  • Patent number: 11230688
    Abstract: An in vitro microfluidic gut-on-chip is described herein that mimics the structure and at least one function of specific areas of the gastrointestinal system in vivo. In particular, a multicellular, layered, microfluidic culture is described, allowing for interactions between lamina propria-derived cells and gastrointestinal epithelial cells and endothelial cells. This in vitro microfluidic system can be used for modeling inflammatory gastrointestinal tissue, e.g., Crohn's disease, colitis and other inflammatory gastrointestinal disorders. These multicellular, layered microfluidic gut-on-chip further allow for comparisons between types of gastrointestinal tissues, e.g., small intestinal deuodejeum, small intestinal ileium, large intestinal colon, etc., and between disease states of gastrointestinal tissue, i.e. healthy, pre-disease and diseased areas.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: January 25, 2022
    Assignee: EMULATE, INC.
    Inventors: S. Jordan Kerns, Jenifer Obrigewitch, Michael Salmon, Benjamin Richards Umiker
  • Patent number: 11174462
    Abstract: The invention relates to culturing brain endothelial cells, and optionally astrocytes and neurons in a fluidic device under conditions whereby the cells mimic the structure and function of the blood brain barrier. Culture of such cells in a microfluidic device, whether alone or in combination with other cells, drives maturation and/or differentiation further than existing systems.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: November 16, 2021
    Assignees: EMULATE, Inc., Cedars-Sinai Medical Center
    Inventors: S. Jordan Kerns, Norman Wen, Carolina Lucchesi, Christopher David Hinojosa, Jacob Fraser, Geraldine Hamilton, Gad Vatine, Samuel Sanees, Clive Svendsen, Daniel Levner, Dhruv Sareen
  • Patent number: 11150255
    Abstract: Compositions, devices and methods are described for preventing, reducing, controlling or delaying adhesion, adsorption, surface-mediated clot formation, or coagulation in a microfluidic device or chip. In one embodiment, blood (or other fluid with blood components) that contains anticoagulant is introduced into a microfluidic device comprising one or more additive channels containing one or more reagents that will re-activate the native coagulation cascade in the blood that makes contact with it “on-chip” before moving into the experimental region of the chip.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: October 19, 2021
    Assignee: EMULATE, Inc.
    Inventors: Daniel Levner, Christopher David Hinojosa, Norman Wen, Jacob Fraser, Justin Nguyen, Riccardo Barrile, Geraldine Hamilton, Catherine Karalis, Hyoungshin Park, Antonio Varone, Andries Van der Meer, Monicah Otieno, David Conegliano
  • Patent number: 11141727
    Abstract: Methods of removing bubbles from a microfluidic device are described where the flow is not stopped. Methods are described that combine pressure and flow to remove bubbles from a microfluidic device. Bubbles can be removed even where the device is made of a polymer that is largely gas impermeable.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: October 12, 2021
    Assignee: EMULATE, Inc.
    Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Kyung Jin Jang
  • Patent number: D929607
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: August 31, 2021
    Assignee: EMULATE, INC.
    Inventors: Christopher David Hinojosa, Joshua Gomes
  • Patent number: D938611
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: December 14, 2021
    Assignee: EMULATE, INC.
    Inventors: Guy Robert Thompson, II, Norman Wen, Lewis Rowe
  • Patent number: D941490
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: January 18, 2022
    Assignee: EMULATE, INC.
    Inventors: Guy Robert Thompson, II, Norman Wen, Lewis Rowe