Patents Assigned to Endress + Hauser
  • Patent number: 11936376
    Abstract: A method for operating at least one optoelectronic button or operating element arranged behind an optically transparent control panel of a field device of automation technology for detecting an actuation of the optoelectronic button or operating element by an operator of the field device includes detecting whether the field device of automation technology is located in an interior area or in an exterior area; defining an evaluation condition which is used to detect the actuation of the optical button or control element; and detecting or evaluating whether an actuation of the optoelectronic button or control element is present based on the defined evaluation condition.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: March 19, 2024
    Assignee: Endress+Hauser SE+Co. KG
    Inventors: Simon Gerwig, Mike Frank, Dirk Rapp
  • Patent number: 11933653
    Abstract: The invention discloses a probe for detecting changes of a medium in a container, comprising: a process connection for connecting the probe to the container, wherein the process connection is part of a housing, especially, an integral part of a housing; the housing comprising at least one microwave chip for generating microwaves, which chip is connected to at least one antenna, wherein the antenna transmits and receives the microwaves in the direction of the medium; an interface for connecting the probe to a higher-level unit; and a data processing unit which is designed to receive data, especially, measurement data, from the higher-level unit via the interface and to transmit data to the higher-level unit, to activate the microwave chip, and to process signals that are dependent on the received microwaves.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: March 19, 2024
    Assignee: Endress+Hauser Conducta GmbH+Co. KG
    Inventors: Ronny Grosse-Uhlmann, Andreas Eberheim, Torsten Pechstein
  • Patent number: 11933657
    Abstract: A method for putting into operation and/or checking an ultrasonic, flow measuring point using a service unit, wherein the service unit has a display unit and a camera, wherein the measuring point includes a pipeline for conveying a medium and at least one ultrasonic transducer, includes identifying the measuring point vis a vis the service unit; ascertaining settable parameters based on the identity of the measuring point; registering geometric data of at least one part of the measuring point by means of the camera; analyzing registered geometric data and deriving at least one parameter value for at least one of the parameters to be set based on the analytical result and the identity; ascertaining at least one optimum mounting position based at least on the derived parameter value; and mounting an ultrasonic transducer at one of the ascertained optimum mounting positions.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: March 19, 2024
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Guido Schwanekamp, Michal Bezdek, Achim Wiest, Beat Kissling
  • Patent number: 11933756
    Abstract: An electrochemical sensor comprising a probe immersible in a measured medium and having at least two electrodes of a first electrically conductive material and at least one probe body of a second, electrically non-conductive material. The electrodes are at least partially embedded in the probe body and insulated from one another by the probe body, wherein the at least two electrodes are embodied of at least one conductive material and the probe body of at least one electrically insulating ceramic, wherein the electrodes are embodied of thin, measuring active layers of a conductive material and sit in an end face of the probe body of a ceramic material, and wherein the electrodes are electrically contacted via connection elements extending through the probe body.
    Type: Grant
    Filed: April 7, 2022
    Date of Patent: March 19, 2024
    Assignee: Endress+Hauser Conducta GmbH+Co. KG
    Inventors: Christian Fanselow, Stefan Paul
  • Patent number: 11933806
    Abstract: The present disclosure relates to a measuring transducer of a measurement device for registering a mass flow or a density of a medium The measuring transducer includes a measuring tube, at least one exciter adapted to excite the measuring tube to execute oscillations, and two sensors adapted to register deflection of oscillations of the measuring tube. The exciter and the sensors each have a coil device including a circuit board with a first coefficient of thermal expansion. The coil device of the sensors or exciter are/is secured using a holder apparatus adapted to clamp the circuit board, wherein the circuit board is mechanically contacted by the holder apparatus using at least one holder element, wherein the holder element has a second coefficient of thermal expansion, wherein the first coefficient of thermal expansion and the second coefficient of thermal expansion differ from one another by less than 3*10?6/Kelvin.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: March 19, 2024
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Benjamin Schwenter, Marc Werner, Claude Hollinger, Martin Stucki
  • Patent number: 11928646
    Abstract: A method for verifying field device inventory includes connecting a processing unit to a network; reading the address space of the network using the processing unit to generate a list of field devices contained in the address space; establishing communication between the processing unit and a field device contained in the list; reading out identification information of the field device using the processing unit, the identification and a characteristic parameter of the field device; carrying out a consistency check, a negative result being achieved if a field device is already entered under the serial number that has been read out; checking, if a negative result, whether a characteristic parameter of the field device corresponds with the characteristic parameter that has been read out; and outputting a notification using the processing unit that a characteristic parameter assigned to the field device deviates from the parameter that has been read out.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: March 12, 2024
    Assignee: Endress+Hauser Process Solutions AG
    Inventors: Adrian Gersbach, Michael Maneval
  • Patent number: 11926457
    Abstract: The disclosure relates to a sampling system for processing a liquid sample, including a retrieving module configured to be fluidically connected to a liquid-source and configured to retrieve a liquid sample from the liquid-source, a filling module configured to fill the retrieved liquid sample into a sampling container, a storing module configured to store the sampling container filled with the liquid sample, and a disposal module configured to discard the liquid sample.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: March 12, 2024
    Assignee: Endress+Hauser Conducta GmbH+Co. KG
    Inventors: Bo Ottersten, Eckhard Sommer
  • Patent number: 11920972
    Abstract: The invention relates to a method for state monitoring of a coil that is part of a device for determining at least one process variable of a medium in a containment. The method includes supplying the coil with an electrical excitation signal and receiving an electrical, received signal from the coil, ascertaining a first frequency for the excitation signal, in the case of which a first phase shift between the excitation signal and received signal is less than a predeterminable limit value, and ascertaining a state indicator for the coil based on the first frequency. Further disclosed is a device embodied for performing a method of the invention.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: March 5, 2024
    Assignee: Endress+Hauser SE+Co. KG
    Inventors: Romuald Girardey, Raphael Kuhnen, Izabella Sandor
  • Patent number: 11913840
    Abstract: A device for determining and/or monitoring a process variable of a medium includes a measuring insert, having a sensor element for sensing the process variable arranged in an end region of the measuring insert, and a dipping body for receiving the measuring insert which at least temporarily and/or partially protrudes into the medium and surrounds the measuring insert at least in a subregion nearest the medium. The device further includes a coupling unit introduced into the dipping body and designed to fill up an inner volume between an inner wall of the dipping body and an outer wall of the measuring insert at least in the subregion in which the sensor element is located as to ensure mechanical coupling between the dipping body and the measuring insert.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: February 27, 2024
    Assignee: Endress+Hauser Wetzer GmbH+Co. KG
    Inventors: Christian Peuker, Pavo Vrdoljak, Alfred Umkehrer
  • Patent number: 11913834
    Abstract: An optical measurement probe for capturing a spectral response through an intervening material emitting unwanted background radiation includes: a first lens configured to receive light and collimate the light into a collimated excitation beam defining a first aperture; an objective element for focusing the collimated excitation beam to a point or region in a sample through the intervening material, wherein the objective element also receives light scattered by the sample and the intervening material and collimates the scattered light into a collimated collection beam defining a second aperture; and a blocking element within the collimated collection beam for removing the light scattered by the intervening material from the collimated collection beam received from the sample, wherein the second aperture defined by the collimated collection beam is at least two times greater than the first aperture defined by the collimated excitation beam.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: February 27, 2024
    Assignee: Endress+Hauser Optical Analysis, Inc.
    Inventors: James M. Tedesco, Sean J. Gilliam
  • Patent number: 11916695
    Abstract: A field device of automation technology having a function for checking quality of a network connection includes an operating electronics and at least one communication interface for connecting to a communication network having one or more network participants and for building a communication connection, wherein a communication stack and a PHY are associated with the communication interface, wherein the communication stack and the PHY are embodied continually to gain and to store communication information regarding the communication connection, wherein the operating electronics is embodied to read out communication information from the communication stack and from the PHY, and by means of an algorithm to subject the communication information to computation and based on the result of the computation to classify a communication state.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: February 27, 2024
    Assignee: Endress+Hauser Process Solutions AG
    Inventors: Karl Büttner, Axel Eidmann, Benedikt Spielmann, Benjamin Schaupp, Martin Lohmann, Oliver Zwick, Harald Freimark
  • Patent number: 11913969
    Abstract: A method for calibrating a radiometric device for determining and/or monitoring the density of a medium located in a container includes: determining the count rate of the radioactive radiation after it has passed through the empty container on the basis of the activity of the transmitting unit; determining the measured count rate of the radioactive radiation after it has passed through the container when a calibration medium of known density is located in the container; determining the mass attenuation coefficient according to the formula ?=?(ln(N/N0))/(?1D), where D is a beam path of the radioactive radiation or inner diameter of the container, and ?1 is density of the calibration medium; and calculating a calibration curve representing the dependence of the density of the medium on the count rate of the measured radiation intensity after the radiation has passed through the container.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: February 27, 2024
    Assignee: Endress+Hauser SE+Co. KG
    Inventors: Arun Shankar Venkatesh Iyer, Narcisse Michel Nzitchieu Gadeu, Simon Weidenbruch, Jörn Lange, Sebastian Eumann
  • Patent number: 11913816
    Abstract: A magnetic-inductive flow meter for measuring flow velocity or volume flow rate of a medium includes: a measuring tube having a first cross-section and a middle segment, which has a second cross-section, between inlet side and outlet side end planes, wherein the first cross-sectional area is greater than the second cross-sectional area; a pole shoe or a saddle coil, which subtends the measuring tube with a maximum central angle; and an electrode system having two electrode pairs, wherein a central angle in the second cross-section defines a minimum circular sector in which the electrodes located on a side of the measuring tube are distributed, wherein the electrode pairs are arranged in the middle segment such that the central angle and the maximum central angle are adapted relative to one another such that the flow meter is insensitive to departures from a rotationally symmetric flow.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: February 27, 2024
    Assignee: Endress+Hauser Flowtec AG
    Inventor: Simon Mariager
  • Patent number: 11913976
    Abstract: A field device having a safe interface is based on two voltage regulators designed to set electrical current between corresponding contacts of the interface. The field device tests via which of the contacts the field device is connected with a superordinate unit and an automatic configuration of the interface can be performed for the appropriate transmission standard. Because the contacting to the superordinated unit is checked repetitively by means of two electrical current regulators it is assured that the field device can determine and automatically react to a change of the contacting at the interface even during measurement operation. This makes the interface safe and thereby increases the safety of the process plant, in which the field device is applied.
    Type: Grant
    Filed: August 20, 2020
    Date of Patent: February 27, 2024
    Assignee: Endress+Hauser Wetzer GmbH+Co. KG
    Inventors: Björn Walser, Roberto Lugli, Michael Schnalke, Fabian Schmölz
  • Patent number: 11906452
    Abstract: The present disclosure relates to a pH-sensor for determining and/or monitoring a pH value of a medium, having a sensor unit with a wall in contact with the medium, and at least one pH-sensitive material, which has at least one spin state that changes as a function of a pH value. The at least one pH-sensitive material is arranged in or on a region of the wall in such a way that the at least one spin state is subjected to a change in the pH value of the medium. The pH-sensor also includes a spin-sensitive unit, which is configured to detect a variable associated with the at least one spin state, wherein the spin-sensitive unit is arranged in an environment of the at least one pH-sensitive material such that the spin-sensitive unit is subjected to a change in the spin state of the at least one pH-sensitive material.
    Type: Grant
    Filed: May 23, 2022
    Date of Patent: February 20, 2024
    Assignee: Endress+Hauser Conducta GmbH+Co. KG
    Inventors: Thomas Wilhelm, Mohammad Sadegh Ebrahimi, Raphael Kuhnen, Matthäus Speck
  • Patent number: 11906335
    Abstract: A measuring system includes: a lumen forming a flow path and a flow obstruction arranged in the flow path for effecting a disturbance in a flowing fluid; a sensor arrangement adapted to produce a first sensor signal and a second sensor signal; and transmitter electronics. The transmitter electronics are adapted to receive both the first and second sensor signals and to convert such into first and second sensor signal sampling sequences approximating the first and second sensor signals, respectively, the transmitter electronics further adapted using a digital adaptive filter to ascertain from the first sampling sequence a filter coefficients set and therewith to form a z-transfer function for filtering the second sampling sequence such that the z-transfer function is determined by the filter coefficients set, the signal filter and the second sampling sequence to produce a wanted signal sequence, to produce therefrom digital measured values representing a measurement variable.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: February 20, 2024
    Assignee: Endress+Hauser Flowtec AG
    Inventor: Michael Kirst
  • Patent number: 11906339
    Abstract: The invention relates to a Coriolis measuring transducer of a Coriolis measuring device comprising: at least one measuring tube; at least one exciter; at least two sensors; wherein at least one exciter or at least one sensor has a coil device and a magnet device, wherein the magnet device has a holder and at least a first magnet group and at least a second magnet group, wherein the holder has a body with a body length axis and a first end and a second end wherein the first end has an end surface, wherein the body has three recesses, wherein a central recess is separated, in each case, from an outer recess by, in each case, an intermediate wall, wherein each intermediate wall has an opening, and wherein the first magnet group is arranged in a first opening, and wherein the second magnet group is arranged in a second opening.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: February 20, 2024
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Benjamin Schwenter, Marc Werner, Claude Hollinger, Gebhard Gschwend
  • Patent number: 11906327
    Abstract: The present disclosure discloses a sensor holder for a flow sensor, comprising a substantially cylindrical housing with a housing interior with an opening at a first front face. The opening is designed to receive the flow sensor. The housing at the second front face, which is opposite the first front face, is conical. A first flushing opens to the housing interior, where the opening opens into the end region of the cone, and a second flushing opens to the housing interior. A fastening unit is designed to fasten the flow sensor in the housing, and a first wall holder is designed to be fastened to a wall. The first wall holder comprises a joint in the region of the second front face, with the joint connecting to the housing. The housing can be moved via the joint from a measurement position into a maintenance position.
    Type: Grant
    Filed: April 8, 2022
    Date of Patent: February 20, 2024
    Assignee: Endress+Hauser Conducta GmbH+Co. KG
    Inventors: Alejandro Vaca Torres, Michael Wiederkehr, Andreas Müller, Ralf Bernhard
  • Patent number: 11901149
    Abstract: An SMD-solderable component comprises a resistance element, a first contact element, and a second contact element, wherein the first contact element is connected with a first end section of the resistance element by means of a first soldered connection and the second contact element is connected with a second end section of the resistance element by means of a second soldered connection. At least one of the first soldered connection and the second soldered connection is a lead-free soldered connection that is made with a lead-free solder preform. Further disclosed is a method for producing an SMD-solderable component.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: February 13, 2024
    Assignee: Endress+Hauser SE+Co. KG
    Inventors: Bernd Strütt, Dietmar Birgel, Silke Czaja
  • Patent number: 11885657
    Abstract: The present disclosure relates to a device for determining and/or monitoring at least one process variable of a medium including at least one sensor element and a unit at least partially including a material with anisotropic thermal conductivity. According to the present disclosure the unit is frictionally connected to the sensor element, and in particular the unit is frictionally fastened on a surface of the sensor element.
    Type: Grant
    Filed: December 1, 2020
    Date of Patent: January 30, 2024
    Assignee: Endress+Hauser Wetzer GmbH+Co. KG
    Inventor: Harald Bründl