Patents Assigned to Endress + Hauser
  • Patent number: 11782008
    Abstract: Disclosed is an apparatus for determining a process variable of a medium in a containment, comprising first and second oscillatory elements, first and second driving/receiving units, and electronics. The first driving/receiving unit is embodied to excite the first oscillatory element using a first electrical excitation signal to execute mechanical oscillations, and to receive the mechanical oscillations of the first oscillatory element and to convert such into a first electrical, received signal, wherein the second driving/receiving unit is embodied to excite the second oscillatory element by means of a second electrical excitation signal to execute mechanical oscillations, and to receive the mechanical oscillations of the second oscillatory element and to convert such into a second electrical, received signal, and wherein the electronics is embodied to determine the process variable from the first received signal and/or the second received signal.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: October 10, 2023
    Assignee: Endress+Hauser Conducta GmbH+Co. KG
    Inventors: Erik Hennings, Dagmar Kaschuba, Marco Bezzon
  • Patent number: 11783976
    Abstract: The coil comprises a coil carrier, a coil wire at least partially surrounded by an insulating layer and wound around the coil carrier, as well as a protective cover layer at least partially covering the coil wire wound around the coil carrier. The coil wire is composed, at least partially, of silver, the insulating layer surrounding the coil wire is composed, at least partially, of a ceramic material, and the protective cover layer is composed, at least partially, of a ceramic material and/or a glass.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: October 10, 2023
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Benjamin Schwenter, Claude Hollinger, Marc Werner, Martin Stucki
  • Patent number: 11781696
    Abstract: A tube adapter for a pipeline for conveying a medium includes a pipeline section having a tubular, first channel for inserting the pipeline section into the pipeline, and a tubular, second channel, which is arranged at a first predeterminable angle to the first channel and connected with the first channel. In a transition region between a wall of the first and a wall of the second channel, at least one hollow is present in a wall of the first and/or second channel. The present disclosure further includes an arrangement having a measuring device and a tube adapter according to the present disclosure as well as to a method for producing a tube adapter according to the present disclosure.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: October 10, 2023
    Assignee: Endress+Hauser SE+Co. KG
    Inventor: Robert Schmidt
  • Patent number: 11781891
    Abstract: A magnetic-inductive flowmeter includes a measuring tube for conveying a medium, a magnetic field generating coil and at least two measuring electrodes for sensing a measurement voltage inductively generated in the medium, including a conductive coating internally selectively applied in the measuring tube for forming a galvanic contacting of the medium.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: October 10, 2023
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Thomas Sulzer, Simon Mariager, Simon Triebenbacher, Michael Fuchs
  • Patent number: 11774271
    Abstract: Disclosed is a field device of automation technology comprising a measuring transducer for ascertaining a measurement signal and a measurement transmitter for output of the measurement signal ascertained. The field device has at least one housing of the measuring transducer and/or of the measurement transmitter, in which electronic components of the measuring transducer and/or of the measurement transmitter are arranged, characterized in that the electronic components are embedded in an epoxide polymer foam, which is a reaction product of a self foaming, potting compound comprising at least the following components: 25 to 75 wt-% of a diglycidyl ether resin; at least one amine containing hardening system comprising a Mannich base; and at least one foaming agent, and a method for manufacturing a field device of automation technology.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: October 3, 2023
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Beat Tschudin, Christian Gwerder
  • Patent number: 11774348
    Abstract: The present disclosure relates to a sensor system having at least one measuring point having at least one first sensor and one measuring transducer. The first sensor is configured to output first sensor signals that are a function of a first measurand of a measuring medium present at the measuring point. The measuring transducer is connected to the first sensor in order to receive the first sensor signals and comprises an evaluation application which is configured to determine one additional piece of information that is different from the first measurand using an evaluation algorithm on the basis of at least the first sensor signals. The sensor system furthermore comprises a higher-level data processing structure, such as a server or a cloud. Both the higher-level data processing structure and the measuring transducer are configured to execute a training application configured to train the evaluation algorithm.
    Type: Grant
    Filed: January 20, 2021
    Date of Patent: October 3, 2023
    Assignee: Endress+Hauser Conducta GmbH+Co. KG
    Inventor: Manfred Jagiella
  • Patent number: 11774953
    Abstract: Disclosed is a method for checking the setting of predefined security functions of a field device of process and automation technology, wherein the predefined security functions relate to an access to a function of the field device by an unauthorized person. The method includes: identifying a user; starting by the user a query about the actual setting of the security functions predefined at the measuring point; comparing actual setting of the predefined security functions with a target setting of the predefined security functions defined by the stipulated security level; and outputting an electronic report about the matching or deviation of the actual setting from the target setting of the predefined security functions. Depending on the matching or deviation of the actual setting from the target setting of the predefined security functions, different steps are carried out.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: October 3, 2023
    Assignee: Endress+Hauser Wetzer GmbH+Co. KG
    Inventor: Michael Kuhl
  • Patent number: 11772179
    Abstract: Disclosed is a method for producing a high-temperature-resistant, lead-free solder joint between a circuit board and a part, wherein a lead-free solder preform is used that has a composite material having a first composite component arranged substantially in layers and wherein the part is soldered with the solder preform in a hot-bar selective soldering process. Also disclosed is a high-temperature-resistant, lead-free solder joint and a field device of automation technology for determining and/or monitoring the process variable of a medium with a high-temperature-resistant, lead-free solder joint.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: October 3, 2023
    Assignee: Endress+Hauser SE+Co. KG
    Inventors: Elke Schmidt, Dietmar Birgel
  • Patent number: 11774477
    Abstract: The invention relates to a measuring device for determining the dielectric value of a medium. The measuring device is based on two waveguides, each of which has a signal gate on one end. The waveguides are, in such case, so arranged that the signal gates lie opposite one another. Formed therebetween is a sample space for the medium, such that a high frequency signal, which is in-coupled into the first waveguide, is transmitted into the second waveguide via the second signal gate after passage through the medium. Since the transmitted fraction and the reflected fraction of the high frequency signal depend strongly on the dielectric value, such can, as a result, be measured with a high sensitivity and, depending on choice of the frequency band and dimensioning of the waveguides, over a large value range.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: October 3, 2023
    Assignee: Endress+Hauser SE+Co. KG
    Inventor: Thomas Blödt
  • Patent number: 11774276
    Abstract: A Coriolis mass flow meter comprises a vibration element, an exciter assembly, a sensor assembly, and an electronic transformer circuit electrically coupled to the exciter assembly and the sensor assembly. The vibration element is contacted by the flowing fluid. The exciter assembly is designed to convert electric power into mechanical power to produce mechanical vibrations of the vibration element. The transformer circuit generates an electric driver signal and feeds electric power to the exciter assembly. The vibration element mechanically vibrates with a vibration frequency specified by the electric driver signal. The sensor assembly has two electrodynamic vibration sensors designed to convert vibrational movements of the vibration element at a first or at a second measurement point into electric vibration measurement signals having an AC voltage component with a frequency and with an amplitude based on the frequency and on a magnetic flux flowing through the respective vibration sensor.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: October 3, 2023
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Robert Lalla, Alfred Rieder, Martin Josef Anklin, Reinhard Huber
  • Patent number: 11768750
    Abstract: The present disclosure relates to a method for improving the measuring performance of a field device having the following steps: a multiplicity of field devices are configured using a configurations tool; the configuration data and environmental conditions of the field devices at the respective measuring positions are stored in a central data memory as training data, the training data are made available to an adaptive computing program which uses at least one artificial intelligence method; current information relating to the particular application and the environmental conditions at the measuring position of the field device are made available to the adaptive computing program; on the basis of the current information, the adaptive computing program provides the field device to be configured with configuration data on the basis of the multiplicity of training data, which configuration data are matched to the particular application taking into account the environmental conditions.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: September 26, 2023
    Assignee: Endress+Hauser SE+Co. KG
    Inventor: Romuald Girardey
  • Patent number: 11761806
    Abstract: A thermal flowmeter for measuring the mass flow rate of a medium in a measuring tube, includes: a measuring tube having a measuring tube wall; a sensor having four probes that project into the measuring tube from a main sensor body; and an electronic measuring/operating circuit designed to operate at least three probes and to generate and provide flow measurement values by operating the probes, each probe having a main probe body and an active probe body, the active probe body designed to heat the medium, to determine the temperature of the medium and/or to influence a flow of the medium in the measuring tube, wherein the main probe bodies span a rhombus on a surface of the main sensor body, and the rhombus is defined by centroid points of cross-sections of the main probe bodies.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: September 19, 2023
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Alexander Grün, Mathieu Habert
  • Patent number: 11761998
    Abstract: The present disclosure relates to a method for determining a conductivity value of a measurement medium using a conductivity sensor. The method includes providing a conductivity sensor with at least one transmitting unit, at least one receiving unit, and a control unit having a storage module, and transmitting a stimulation signal into the measurement medium at the transmitting unit by the control unit. The method also includes receiving a detection signal at the receiving unit, determining a signal quality indicator by the control unit based on the detection signal, and determining a conductivity signal corresponding to the detection signal. The method further includes storing the conductivity signal, determining a dynamic factor by the control unit based on the conductivity signal, filtering the conductivity signal using a filter function depending on the determined signal quality indicator and the dynamic factor, and outputting a filtered measured value of the filtered conductivity signal.
    Type: Grant
    Filed: September 12, 2022
    Date of Patent: September 19, 2023
    Assignee: Endress+Hauser Conducta GmbH+Co. KG
    Inventors: Stefan Paul, Thomas Nagel
  • Patent number: 11754539
    Abstract: The present disclosure relates to a computer-implemented method for forecasting calibration spectra including a step of providing a machine learning model trained using historical calibration data corresponding to different gas species at different pressures. The computer-implemented method also includes steps of performing a calibration scan of one gas species at one pressure using an analyzer and generating calibration curves for the analyzer corresponding to one or multiple gas species at multiple pressures using the machine learning model and the calibration scan. Thereafter, a spectrum is obtained using the analyzer, and a concentration measurement is generated using the spectrum and at least one of the calibration curves.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: September 12, 2023
    Assignee: Endress+Hauser Optical Analysis, Inc.
    Inventors: Kevin Ludlum, Marc Winter, Benjamin Scherer, Xiang Liu
  • Patent number: 11754455
    Abstract: A pressure measuring device includes a ceramic pressure sensor and a process connection, the pressure sensor including a measuring membrane. The pressure measuring device further includes a carrier made of titanium and having a free-standing tubular carrier region running parallel to the surface normal onto the measuring membrane and having an end region adjacent the process connection connected to the process connection and an end region opposite the process connection to which the pressure sensor is fastened by a jointing that connects an outer edge of a front face of the pressure sensor to the end region of the carrier opposite the process connection and carries the pressure sensor.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: September 12, 2023
    Assignee: Endress+Hauser SE+Co. KG
    Inventors: Nils Ponath, Andreas Rossberg, Elke Schmidt
  • Patent number: 11753710
    Abstract: The present disclosure relates to a method of manufacturing an ion-selective sensor element for a potentiometric sensor, the sensor element having a sensor element body and at least one glass layer arranged on the sensor element body, the method comprising applying the at least one glass layer to the sensor element body by means of a thermal spraying method, in which a powder of glass particles is sprayed onto the sensor element body.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: September 12, 2023
    Assignee: Endress+Hauser Conducta GmbH+Co. KG
    Inventors: Thomas Wilhelm, Matthäus Speck
  • Patent number: 11751320
    Abstract: An automation field device comprises a housing that surrounds an inner space; a sensor- and/or actuator element arranged at the housing; an electronic circuit arranged in the housing and having a round, outer contour and a plurality of spring contacts in an edge region. The inner contour of the housing and the edge contour of the first circuit board are adapted to one another so that the first circuit board is introducible into the housing with a main plane orthogonal to a longitudinal axis of the housing. The spring contacts are so arranged on the first circuit board and embodied to hold the first circuit board in the inner space and to produce an electrical connection between the first circuit board and the housing to drain away disturbance currents from the first circuit board.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: September 5, 2023
    Assignee: Endress+Hauser SE+Co. KG
    Inventors: Christian Strittmatter, Simon Gerwig, Andreas Fuz
  • Patent number: 11747293
    Abstract: Disclosed is a method and a device for detecting a non-condensable portion of a medium, which has at least one condensable portion and is present at least partially in gaseous form, wherein in a first method step a temperature measuring device measures a temperature of the medium and a pressure measuring device measures a pressure of the medium, wherein in a second method step a ratio of the pressure to temperature is formed by means of an electronic measuring/operating circuit and this ratio is compared with a desired ratio of a desired pressure and a desired temperature, and wherein in a third method step the electronic measuring/operating circuit outputs a report in case of a minimum deviation of the ratio from the desired ratio.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: September 5, 2023
    Assignee: Endress+Hauser Flowtec AG
    Inventor: Rainer Höcker
  • Patent number: 11747187
    Abstract: The present disclosure includes a method for creating a masking curve for an ultrasonic or radar-based fill level measuring device. A measuring signal is transmitted, a measurement curve is recorded based on the reflected measuring signal, and at least two greatest maxima are ascertained from the measurement curve. The at least two ascertained maxima are normalized with reference to the greatest maximum and one of the normalized maxima is assigned to the fill level, so that the masking curve can be created based on the measurement curve in at least one subrange between the fill level measuring device and the maximum of the fill level value. Because of the normalization of the maxima, the danger of mistake in the assignment can be lessened, so that the assignment and subsequent fill level measurements are reliable.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: September 5, 2023
    Assignee: Endress+Hauser SE+Co. KG
    Inventors: Carmen Roser, Daniel Müller, Florian Palatini, Tanja Haag
  • Patent number: 11747200
    Abstract: An optical process sensor for measuring at least one measured variable of a medium in a container includes: a housing; a light source in the housing for emitting transmission light; a light detector in the housing for receiving reception light; and an interface including a first mechanical section, which is an integrated part of the housing, and a first optical section having a first path and a first light guide, wherein the first light guide is configured such that transmission light is guided from the light source into the first path via the first light guide and decouples transmission light from the housing, and having a second path and a second light guide, wherein the second light guide is configured such that reception light is coupled into the interior of the housing and guided from the second path to the light detector via the second light guide.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: September 5, 2023
    Assignee: Endress+Hauser Conducta GmbH+Co. KG
    Inventors: Hans Meyer, Joachim Mannhardt