Abstract: An aromatic oil having an aniline point less than 120.degree. F., a mutagenicity index based on The Modified Ames Test of less than 2.0, a benzene, naphthalene and methyl substituted benzenes and naphthalenes individual component concentrations less than 100 wppm, and a clay gel aromatics fraction content of at least 50 weight % based on aromatic oil, said aromatics fraction characterized in that it has a naphthene-benzenes and dinaphthenebenzenes content of at least 50 volume % based on aromatics fraction. The invention also relates to a process for preparing the aromatic oil which comprises the steps of selective solvent extraction, selective distillation and two-stage hydrotreating with removal of hydrogen sulfide and/or ammonia. The aromatic oils are useful in agricultural formulations due to their low environmental impacts.
Abstract: By this invention there is provided a catalyst composition comprising a Group IVB oxide, an amorphous silica-alumina support having dispersed thereon a rare earth oxide, which as herein used also includes yttrium oxide, and a metal(s) selected from the group consisting of Group VIII noble metal(s), mixtures of Group VIII noble metal(s) and tin, mixtures of Group VIII noble metal(s) and rhenium, and mixtures of Group VIII noble metal(s), tin and rhenium. The amorphous silica-alumina support contains at least about 50% silica by weight. The catalyst can function as a hydrocarbon conversion catalyst in reactions where platinum on halided (Cl,F)-alumina is typically used.
Type:
Grant
Filed:
December 20, 1994
Date of Patent:
October 10, 1995
Assignee:
Exxon Research & Engineering Co.
Inventors:
Stuart L. Soled, Gary B. McVicker, William E. Gates, Sabato Miseo
Abstract: The present invention relates to novel compositions that contain a base oil and certain substituted fullerenes effective to improve the cold flow properties of the base oil. Typically the substituted fullerenes have the general formula:C.sub.Fn (GR.sub.y).sub.xIn the formula C.sub.
Type:
Grant
Filed:
April 19, 1994
Date of Patent:
October 3, 1995
Assignee:
Exxon Research & Engineering Co.
Inventors:
George W. Schriver, Abhimanyu O. Patil, David J. Martella, Kenneth Lewtas
Abstract: A method for converting solid carbonaceous materials to liquid products. The solid carbonaceous material is first treated with a aqueous composition of a metal carbonate or bicarbonate. This results in the metal being atomically dispersed in the carbonaceous material. The treated solid carbonaceous material is then subjected to liquefaction conditions. The preferred metal is iron.
Type:
Grant
Filed:
March 25, 1994
Date of Patent:
October 3, 1995
Assignee:
Exxon Research & Engineering Co.
Inventors:
Stephen D. Reynolds, Claude C. Culross, Stephen D. LeViness, John W. Larsen
Abstract: The present invention is directed to materials which improve the cetane number of diesel fusel when added in an amount in the range of 0.01 to 2 wt % to such fuel. The materials are the nitration product of alcohols obtained by the reduction of tall oil fatty acids, tall oil fatty acid esters, vegetable oils and mixtures thereof.
Type:
Grant
Filed:
December 2, 1994
Date of Patent:
October 3, 1995
Assignee:
Exxon Research & Engineering Co.
Inventors:
Marc-Andre Poirier, David E. Steere, James A. Krogh
Abstract: The oxidation stability of lube base oils is improved by the addition of tetralins or combination of tetralins and organic sulfides. The addition of tetralins or combination of tetralins and organic sulfides to formulated lube oils has also been found to improve the oxidation stability of such formulated oil.
Abstract: Each of a plurality of cyclones is suspended from the roof of a vessel by means of tubular extensions of their barrels. These tubular extensions are slotted lengthwise to minimize thermal stresses in the vessel head. Importantly, this hanging scheme provides a direct extension within the load path for the cyclone weight, thus supporting the cyclone in tension stresses rather than high bending stresses.
Abstract: The invention concerns a method for reactive separation of mixtures containing hydrocarbons and oxygenated hydrocarbons, by contacting a mixture of hydrocarbons such as C.sub.2 to C.sub.26 hydrocarbons and mixtures thereof and oxygenated hydrocarbons, such as C.sub.2 to C.sub.40 oxygenated hydrocarbons and mixtures thereof to form a mixture of hydrocarbons and lower molecular weight oxygenated hydrocarbons and heating the mixture in water at temperature typically from about and pressure sufficient to cleave the oxygenated hydrocarbons to lower molecular weight products to form a liquid layer containing water soluble reaction products and an organic layer containing primarily hydrocarbons.
Type:
Grant
Filed:
January 27, 1994
Date of Patent:
September 26, 1995
Assignee:
Exxon Research & Engineering Co.
Inventors:
Ramzi Y. Saleh, Michael Siskin, Glen B. Brons, Stephen N. Vaughn, Richard H. Schlosberg
Abstract: Disclosed is a method which combines catalytic cracking and olefin production using a coked catalytic cracking catalyst as a dehydrogenation catalyst to dehydrogenate an alkane feed stream and form an olefin rich product stream. The method uses a staged backmixed regeneration system to form the dehydrogenation catalyst and to fully reactivate deactivated cracking catalyst for reuse in the cracking reaction. The catalyst preferably comprises a crystalline tetrahedral framework oxide component.
Type:
Grant
Filed:
November 19, 1993
Date of Patent:
September 5, 1995
Assignee:
Exxon Research & Engineering Co.
Inventors:
Michael C. Kerby, Roby Bearden, Jr., Stephen M. Davis
Abstract: The bioremediation of hydrocarbon contaminated soil is enhanced by applying to the soil a hydrocarbon solution of a surfactant selected from the group consisting of: (a) mixture of a sorbitan ester of a C.sub.7 to C.sub.22 monocarboxylic acid and a polyoxyalkylene adduct of a sorbitan monoester of a C.sub.7 to C.sub.22 monocarboxylic acid, the adduct having from 6 to 50 polyoxyalkylene units, (b) an alkyl glycoside wherein the alkyl group has from about 8 to about 18 carbon atoms and the glycoside is a mono or diglycoside and (c) a mixture of (a) and (b) and (c) and thereafter applying microbial nutrients to the soil in amounts sufficient to promote the growth of indigenous microorganisms.
Type:
Grant
Filed:
February 2, 1994
Date of Patent:
July 25, 1995
Assignee:
Exxon Research & Engineering Co.
Inventors:
Ramesh Varadaraj, Jan Bock, Max L. Robbins
Abstract: A vegetation enhancement composite including a vegetation enhancement agent consisting of a first member selected from the group consisting of at least one macronutrient, micronutrient, nitrogen fertilizer including an inhibitor of nitrification activity, slow release fertilizer, and mixtures of such members and a pesticide; and at least one first controlled release film including a sulfonated polymer coating at least a portion of a surface of the vegetation enhancement agent.
Type:
Grant
Filed:
December 31, 1990
Date of Patent:
July 25, 1995
Assignee:
Exxon Research & Engineering Co.
Inventors:
Ilan Duvdevani, Evelyn N. Drake, Warren A. Thaler, Pacifico V. Manalastas
Abstract: The solvent extraction of aromatics containing oil using a selective aromatics extraction solvent to produce an aromatics rich extract phase and an oil rich/aromatics lean raffinate is improved by the steps of subjecting the extract phase to a membrane separation step to produce a permeate phase and a retentate phase passing the retentate phase to a settling zone wherein the retentate phase spontaneously separates into two liquid phases, and recycling the upper phase to the extraction zone, either to the feed inlet or to the bottom of the extract reflux zone to thereby increase the raffinate oil recovered from the extraction tower. Alternatively or in addition to the above, a side stream can be taken from an intermediate zone of the extraction zone (e.g. extraction tower) and fed to a membrane separation to produce a solvent rich permeate and an oil rich retentate.
Abstract: An integrated fluid coking/paraffin dehydrogenation process. The fluid coking unit is comprised of a fluid coker reactor, a heater, and a gasifier. Solids from the fluidized beds are recycled between the coking zone and the heater and between the heater and the gasifier. A separate stream of hot solids from the gasifier is passed to the scrubbing zone or to a satellite fluidized reactor. A first stream containing an effective amount of C.sub.1 to C.sub.2 paraffins is introduced into this stream of hot solids between the point where the diluent is added and the scrubbing zone. The hot particles act to catalyze the dehydrogenation of paraffins to olefins. A second stream containing C.sub.3 to C.sub.10 paraffins is introduced downstream of the introduction of said first stream.
Type:
Grant
Filed:
October 27, 1993
Date of Patent:
July 4, 1995
Assignee:
Exxon Research & Engineering Co.
Inventors:
Roby Bearden, Jr., Michael C. Kerby, Stephen M. Davis
Abstract: In one embodiment of the present invention, there is provided an improved controlled release fertilizer comprising a fertilizer coated with a neutralized, sulfonated EPDM polymer having from about 2% to about 50% crystallinity. Preferably, the coated fertilizer has a coating thickness of from about 1 to about 100 micrometers.
Abstract: A feed stream comprising a mixture of at least two separable components is separated into a permeate rich in one or more components and a retentate lean in those same components by a process comprising dissolving the feed in a supercritical solvent under supercritical conditions to produce a solution and contacting the solution with a dense, non-porous perstraction membrane having a first and a second surface, said contacting being along a first surface, wherein a portion of the feed dissolves into the first surface of the membrane, migrates through the perstraction membrane under a concentration gradient and emerges from the membrane at the second surface, as a permeate, the permeate being removed from the second surface by use of a sweep fluid comprising a supercritical solvent at supercritical conditions which may be the same as or different from the supercritical solvent in which the feed is dissolved.
Abstract: An integrated fluid coking/paraffin dehydrogenation process. The fluid coking unit is comprised of a fluid coker reactor, a heater, and a gasifier. Solids from the fluidized beds are recycled between the coking zone and the heater and between the heater and the gasifier. A separate stream of hot solids from the gasifier is diluted with hot solids from the heater then passed to the scrubbing zone of the coker reactor. A light paraffin stream is introduced into this stream of hot solids between the point where the heater solids are introduced and the scrubbing zone. The hot particles act to catalyze the dehydrogenation of the paraffins to olefins.
Type:
Grant
Filed:
October 27, 1993
Date of Patent:
July 4, 1995
Assignee:
Exxon Research & Engineering Co.
Inventors:
Michael C. Kerby, Roby Bearden, Jr., Stephen M. Davis
Abstract: A process for reforming a gasoline boiling range naphtha stream using a reforming process unit comprised of two independent process units, each of which are operated in two stages. The first stage is operated in a fixed-bed mode and is comprised of a plurality of serially connected fixed bed reactors, and the second stage is operated in a moving bed continuous catalyst regeneration mode. A hydrogen-rich stream is recycled through both stages for each process unit and the moving-bed reforming zones share a common regeneration zone.
Type:
Grant
Filed:
May 18, 1994
Date of Patent:
May 23, 1995
Assignee:
Exxon Research & Engineering Co.
Inventors:
Gerrit S. Swart, Stuart S. Goldstein, Paul W. Kamienski, George A. Swan, III
Abstract: This present invention includes a composition of matter made up of a kandite clay which has been treated with large molecules containing multi-atom metallic or semi-metallic species and heated to produce pillars within the clay which are located generally between the clay's layers. The pillared kandite composition is useful as a catalyst support, sorbent, or ion exchanger.The present invention also includes a process for producing the pillared kandite composition comprises mixing the finely divided clay in an aqueous solution with the pillaring medium and heating the resulting composition at a temperature high enough to decompose the added compound.
Abstract: The present invention relates to novel polymers which are adducts of an unsaturated hydrocarbon, wherein the novel polymers are produced by contacting cyclic carbonyl monomers with an unsaturated hydrocarbon to form novel cyclic carbonyl polymers having an Mn of about 500 to about 10.sup.7.