Patents Assigned to ExxonMobil Chemicals Patents Inc.
  • Patent number: 10766834
    Abstract: Disclosed are selectivated transalkylation catalyst compositions and methods of making the same. The selectivated transalkylation catalyst compositions have a zeolite framework structure of MWW, FAU, BEA*, or MOR, or mixtures thereof, and are selectivated with a selectivating solution. The selectivating solution includes a dissolved ion of at least one element in Group 1, Group 2, Group 15, Group 16, or Group 17 of the Periodic Table. Also disclosed are processes of producing ethylbenzene and cumene using the selectivated transalkylation catalyst compositions.
    Type: Grant
    Filed: February 19, 2018
    Date of Patent: September 8, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Brett T. Loveless, Daniel J. Benedict, Kathleen M. Keville, Juan D. Henao, Matthew S. Ide
  • Patent number: 10766984
    Abstract: This disclosure relates to systems and processes for cooling polymer product mixtures manufactured at high pressure. The processes of the invention involve cooling and then subsequently reducing the pressure of the product mixture from the reactor. In the systems of the invention, a product cooler is located downstream of the high pressure reactor and upstream of a high pressure let down valve.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: September 8, 2020
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Henri A. Lammens, Paul J. Clymans, Cindy Dewitte
  • Patent number: 10766981
    Abstract: Bimodal polypropylene compositions and a process to form melt blended bimodal polypropylene compositions comprising combining at least two polypropylenes in at least a two-pass process, and forming a bimodal polypropylene composition having a Flexural Modulus (190° C., 1% secant) of at least 1700 MPa, as well as one or more other selected properties. These compositions are suitable for thermoformed articles and injection molded articles, any of which may be foamed.
    Type: Grant
    Filed: August 4, 2015
    Date of Patent: September 8, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Rohan A. Hule, Sudhin Datta, Yi Ping Ni
  • Patent number: 10767005
    Abstract: Bibenzoate copolyesters are based on (4,4?-biphenyl dicarboxylic acid-co-3,4?-biphenyl dicarboxylic acid) as the diacid component, and on an alicyclic diol compound such as 1,4-cyclohexanedimethanol as a portion of the diol component. Copolyesters are based on 4,4?-biphenyl dicarboxylic acid, and/or 3,4?-biphenyl dicarboxylic acid as the diacid component and may include a multifunctional acid. Copolymers may optionally base an essentially amorphous morphology, high glass transition temperature, high elongation at break, and/or high melting temperature.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: September 8, 2020
    Assignees: ExxonMobil Chemical Patents Inc., Virginia Tech Intellectual Properties, Inc
    Inventors: Ryan J. Mondschein, Haoyu Liu, Ting Chen, Timothy E. Long, S. Richard Turner
  • Patent number: 10766975
    Abstract: This invention relates to novel transition metal catalyst compounds comprising four oxygen atoms bonded to a transition metal where two of the oxygen groups are bond to the metal by dative bonds, catalyst systems comprising such and polymerization processes using such.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: September 8, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Donna J. Crowther, Hua Zhou, Jacqueline A. Lovell
  • Patent number: 10759900
    Abstract: Liquid crystalline hydroquinone-3,4?-biphenyl dicarboxylate polyesters, and methods of making them. The polyesters may be melt processed at a temperature below the thermal decomposition temperature and the isotropic temperature, and may form a liquid crystalline glass phase. The polyesters may be formed by polycondensation of hydroquinone or a hydroquinone derivative with 3,4?-biphenyl dicarboxylic acid.
    Type: Grant
    Filed: May 6, 2020
    Date of Patent: September 1, 2020
    Assignees: ExxonMobil Chemical Patents Inc., Virginia Tech Intellectual Property, Inc.
    Inventors: Katherine V. Heifferon, Timothy E. Long, S. Richard Turner, Yong Yang, Syamal Tallury, Ting Chen, Javier Guzman
  • Patent number: 10759886
    Abstract: Disclosed are methods for the production of polymers, including random copolymers (RCPs), in single reactor gas or slurry phase polymerization processes, and polymer compositions produced therefrom. The methods enable polymers having low melting temperatures to be made in gas and slurry phase polymerization processes, where they conventionally could not be made in these processes due to stickiness and fouling problems in the reactor.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: September 1, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Lubin Luo, Jeanette M. Diop, Jian Yang, Sudhin Datta, Patrick Brant
  • Patent number: 10752769
    Abstract: The present invention provides an elastomeric composition comprising: at least one first elastomer; at least one first hydrocarbon polymer additive; and at least one second hydrocarbon polymer additive; wherein each of the first hydrocarbon polymer additive and the second hydrocarbon polymer additive is selected from the group consisting of: C5 aliphatic resins, C9 aromatic resins, mixed C5/C9 resins, pure aromatic monomer resins, dicyclopentadiene (DCPD) resins, aromatic modified cycloaliphatic resins, coumarone indene resins, rosin resins, rosin esters, terpene resins, modified terpene resins, terpene phenolic resins, and hydrogenated resins thereof. The composition may further comprise a second elastomer which is immiscible with the first elastomer.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: August 25, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Xiao-Dong Pan, Bobby J. Harper, Jr., James M. Blake
  • Patent number: 10752570
    Abstract: Disclosed are processes for abating 3-cyclohexenone from a feed mixture comprising cyclohexylbenzene, cyclohexanone, phenol, and 3-cyclohexenone and cyclohexanone, comprising feeding the feed mixture to a first distillation column and a hydrogenating a fraction from in the presence of a hydrogenation catalyst under hydrogenation conditions. Hydrogenation can be carried out in a hydrogenation reactor separate from the first distillation column or in a hydrogenation zone disposed inside the first distillation column.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: August 25, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kendele S. Galvan, Christopher L. Becker, Jörg F. W. Weber, Ashley J. Malik
  • Patent number: 10752740
    Abstract: Disclosed herein are embodiments of films which comprise a polypropylene resin comprising at least 50 mol % propylene, an MWD (Mw/Mn) of greater than 5, and a branching index (g?) of at least 0.95.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: August 25, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Saifudin M. Abubakar, Prasadarao Meka, Stefan B. Ohlsson
  • Patent number: 10752722
    Abstract: A composition and methods for making the same. The composition includes an isoolefin having from 4 to 7 carbons, a first styrene, and a second styrene alkylated with a diene to have a pendant double bond. A copolymer having units derived from an isoolefin having from 4 to 7 carbons and an alkylstyrene can be reacted with a diene to provide the composition. The reaction of the copolymer with the diene can be reacted in the presence of a catalyst at a temperature of about 80° C. to about 200° C.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: August 25, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Andy H. Tsou, Hillary L. Passino, Jennifer L. Rapp
  • Patent number: 10745336
    Abstract: Disclosed are processes for making cyclohexanone from a feed mixture comprising cyclohexylbenzene, cyclohexanone, phenol, 3-cylclohexenone and optionally 2-cyclohexenone, comprising feeding the feed mixture to a first distillation column and hydrogenating a fraction from the first distillation column in a hydrogenation reactor separate from the first distillation in the presence of a hydrogenation catalyst under hydrogenation conditions. A cyclohexanone-rich upper effluent comprising 3-cyclohexenone and 2-cyclohexenone at low concentrations can be obtained from the first distillation column.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: August 18, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kendele S. Galvan, Christopher L. Becker, Jörg F. W. Weber, Ashley J. Malik
  • Patent number: 10745285
    Abstract: A process for converting a feedstock comprising an organic compound to a conversion product by contacting said feedstock at organic compound conversion conditions with a catalyst comprising a mordenite zeolite having a mesoporous surface area of greater than 30 m2/g and an average primary crystal size as measured by TEM of less than 80 nm.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: August 18, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Wenyih F. Lai, Nicholas S. Rollman, Guang Cao
  • Patent number: 10738223
    Abstract: The present invention is related to adhesive compositions comprising about 50 to about 80 wt % of a polymer blend of at least two different propylene-based polymers, wherein the polymer blend has a melt viscosity of about 100 to about 6,000 cP and adhesive compositions comprising about 30 to about 60 wt % of a polymer blend of at least two different propylene-based polymers, wherein the polymer blend has a melt viscosity of about 6,000 cP to about 60,000 cP. When subjected to Temperature Rising Elution Fractionation, the polymer blend exhibits a first fraction that is soluble at ?15° C. in xylene, the first fraction having an isotactic (mm) triad tacticity of about 70 mol % to about 90 mol %; and a second fraction that is insoluble or less soluble than the first fraction at ?15° C. in xylene, the second fraction having an isotactic (mm) triad tacticity of about 85 mol % to about 98 mol %.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: August 11, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jurgen J. M. Schroeyers, Jennifer J. Austin, Shawn W. Mowry, James N. Coffey
  • Patent number: 10738259
    Abstract: This disclosure relates to naphthalene-1,8-dicarboxylate ester compounds, lubricating oil base stocks comprising naphthalene-1,8-dicarboxylate ester compounds, lubricating oil compositions comprising such base stocks, and method of making such base stocks. The lubricating oil base stocks comprising naphthalene-1,8-dicarboxylate ester compounds exhibit desirable lubricating properties such as polarity.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: August 11, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Abhimanyu O. Patil, Hong Cheng, Stephen T. Cohn, James R. Lattner
  • Patent number: 10730206
    Abstract: Provided are methods for producing a thermoplastic vulcanizate and thermoplastic vulcanizates provided therein. The method includes introducing vulcanizable rubber, thermoplastic resin, a masterbatch of a propylene-based elastomer and a cure accelerator for a phenolic resin curative to the reactor, and phenolic resin curative to a reactor and dynamically vulcanizing the rubber with the phenolic resin curative in the presence of the cure accelerator and the thermoplastic resin.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: August 4, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Declan Whelan, Stephen F. Roche, Porter C. Shannon
  • Patent number: 10732158
    Abstract: A method of analyzing a multi-component polymer comprising: (a) dissolving an multi-component polymer having a primary monomer and primary comonomer to form a first volume (soluble portion of multi-component polymer); (b) injecting a portion of the first volume into a chromatographic column to get elution first slices, leaving a second volume behind; (c) filtering the second volume to isolate multi-component polymer solids; (d) dissolving solids to form solution third solution (insoluble portion of multi-component polymer); (e) injecting a portion of third solution into the chromatographic column to get elution second slices; (f) obtain infra-red spectra at wavelengths suitable for the primary monomer and the primary comonomer of first and second elution slices, separately; and (g) for each elution slice, separately calculate: (i) the different polymer components (soluble and insoluble); and (ii) the comonomer content of each component (soluble and insoluble).
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: August 4, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Shuhui Kang
  • Patent number: 10730038
    Abstract: Disclosed herein is a catalyst compound represented by Formula (I) or Formula (II): M is a group 4 metal. Each of R1, R2, R3, R4, R5, R6, R7, R8, and R9 is independently hydrogen, or a C1-C50 substituted or unsubstituted hydrocarbyl, halocarbyl, silylcarbyl, alkoxyl, siloxyl, or one or more of R1 and R2, R2 and R3, R3 and R4, R5 and R6, R6 and R7, and R7 and R8 are joined to form cyclic a saturated or unsaturated ring. Each X is independently a halide or C1-C50 substituted or unsubstituted hydrocarbyl, hydride, amide, alkoxide, sulfide, phosphide, halide, or a combination thereof, or two Xs are joined together to form a metallocycle ring, or two Xs are joined to form a chelating ligand, a diene ligand, or an alkylidene. Also disclosed is a method for using the catalyst compound in a catalyst system to produce polyolefin polymers.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: August 4, 2020
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Matthew W. Holtcamp, Matthew S. Bedoya, Subramaniam Kuppuswamy
  • Patent number: 10731096
    Abstract: Disclosed is a lubricant base stock blend comprising a PAO base stock and an alkylated aromatics (AA) base stock, wherein at least the longer portion of the pendant groups attached to the carbon backbones of the PAO molecules have comparable length to at least the longer portion of the side chain groups attached to the aromatic ring structure of the AA molecules. The comparable lengths of at least the longer portion of the pendant groups and the side chain groups lead to enhanced improvement in oxidation stability of the blend.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: August 4, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Wenning W. Han, Pramod J. Nandapurkar
  • Patent number: 10731092
    Abstract: The invention generally relates to processes for separating steam cracker products by fractional distillation, and to systems and apparatus useful in such processes. More specifically, the invention relates to decreasing the amount of fractionator fouling that can result from increasing the amount of hydrocarbon molecules in the steam cracker feed having four or fewer carbon atoms.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: August 4, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Alok Srivastava, David C. Dutschmann, Thomas W. Pavia