Patents Assigned to ExxonMobil Chemicals Patents Inc.
  • Patent number: 10669414
    Abstract: Provided herein are elastomer blends and membranes including a blend of a propylene-based elastomer, a thermoplastic resin, a flame retardant, and an ultraviolet stabilizer.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: June 2, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Liang Li, Felix M. Zacarias, Narayanaswami Dharmarajan, Jan Kalfus, John R. Hagadorn, Peijun Jiang
  • Patent number: 10662262
    Abstract: Borate activated catalyst systems and methods for making the same for gas phase or slurry phase olefin polymerization are provided. The catalyst system can include a first catalyst comprising a borate activated mono cyclopentadienyl metallocene compound and a second catalyst comprising a supported bis cyclopentadienyl metallocene complex. A supported bis cyclopentadienyl metallocene complex can be prepared to provide a preformed, supported catalyst, wherein the supported bis cyclopentadienyl metallocene complex comprises bis(1,3-methylbutyl cyclopentadienyl) zirconium dichloride. The preformed, supported catalyst can be mixed with mineral oil or hydrocarbon solvent to form a slurry. The slurry can be mixed with a borate activated mono cyclopentadienyl metallocene compound to form the borate activated catalyst system.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: May 26, 2020
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Dongming Li, Ching-Tai Lue, Phillip T. Matsunaga, Mark B. Davis
  • Patent number: 10661258
    Abstract: The invention relates to treating a molecular sieve prepared by at least one in situ selectivation sequence wherein graphitic coke is adhered to said molecular sieve, which is useful in a toluene disproportionation process.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: May 26, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Todd E. Detjen, Xiaobo Zheng, Robert G. Tinger
  • Patent number: 10662325
    Abstract: The present invention relates to a polymer composition comprising a thermoplastic polyester and a propylene-based elastomer, wherein the propylene-based elastomer comprises propylene-derived units and 5 to 30 wt % of ?-olefin-derived units, and has a melting temperature of less than 120° C. and a heat of fusion of less than 75 J/g.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: May 26, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Ying Ying Sun, Yi Ping Ni, Pei Te Bao, Yi Zhou Shi, Xiaoyun Wang
  • Patent number: 10662388
    Abstract: This disclosure relates to ester compounds formed from gamma-branched aliphatic alcohols, lubricating oil base stocks comprising such ester compounds, lubricating oil compositions comprising such ester compounds, and method of making such base stocks. The lubricating oil base stocks comprising the ester compounds exhibit desirable lubricating properties such as polarity.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: May 26, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Abhimanyu O. Patil, Kyle G. Lewis, Satish Bodige, Stephen Zushma
  • Patent number: 10654770
    Abstract: Disclosed herein are processes for producing neopentane. The processes generally relate to demethylating diisobutylene to produce neopentane. The diisobutylene may be provided by the dimerization of isobutylene.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: May 19, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kun Wang, Lorenzo C. DeCaul, James R. Lattner
  • Patent number: 10655072
    Abstract: The invention relates weldments useful as heat transfer tubes in pyrolysis furnaces. The invention relates to tubes that are useful in pyrolysis furnaces. The weldments include a tubular member and at least one mixing element. The tubular member comprises an aluminum-containing alloy. The mixing element comprises an aluminum-containing alloy. The mixing element's aluminum-containing alloy can be the same as or different from the tubular member's aluminum-containing alloy. Other aspects of the invention relate to pyrolysis furnaces which include such weldments, and the use of such pyrolysis furnaces for hydrocarbon conversion processes such as steam cracking.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: May 19, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David B. Spicer, Changmin Chun
  • Patent number: 10654949
    Abstract: This disclosure describes polymerization processes and processes for quenching polymerization reactions using reactive particulates, such as high molecular weight functionalized olefin copolymers, as quenching agents, typically in solution or bulk polymerization processes.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: May 19, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jay L. Reimers, Yifeng Hong, John R. Hagadorn
  • Patent number: 10654766
    Abstract: This disclosure relates to a continuous process for making a dimer from a terminal olefin in the presence of a catalyst system comprising a metallocene compound and alumoxane.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: May 19, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Patrick C. Chen, Delanyo K. Seshie, Md Safatul Islam
  • Patent number: 10647841
    Abstract: Disclosed is a thermoplastic polyolefin composition useful in automotive components comprising at least a polypropylene having a melting point temperature (Tm) of greater than 130° C. and a melt flow rate (230° C./2.16 kg) within the range from 10 g/10 min to 80 g/10 min; an amorphous ethylene-propylene copolymer comprising within the range from 40 wt % to 80 wt % ethylene derived units and having a melt flow rate (230° C./2.16 kg) within the range from 0.1 g/10 min to 20 g/10 min; and a propylene-based elastomer having within the range from 5 to 25 wt % ethylene derived units and having a Tm of less than 110° C. The composition only partially breaks or there is no break at ?29° C. (ASTM D256) with Notched Izod Force of between 10 to 40 ft-lb/in2 at 22° C. (533 to 2,132 J/m2), and between 1.0 to 12 ft-lb/in2 at ?29° C. (53 to 636 J/m2).
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: May 12, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Sudhin Datta, Xin Chen, Abdul M. Jangda, Rohan A. Hule, Jan Kalfus
  • Patent number: 10647633
    Abstract: A fluidized bed process for producing para-xylene via toluene and/or benzene methylation with methanol using a dual function catalyst system. A first catalyst accomplishes the toluene and/or benzene methylation and a second catalyst converts the by-products of the methylation reaction or unconverted methylating agent, improves the yields of the desired products, or a combination thereof. The inclusion of the second catalyst can suppress the C1-C5 non-aromatic fraction by over 50% and significantly enhance the formation of aromatics.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: May 12, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Nikolaos Soultanidis, Todd E. Detjen, Scott J. Weigel
  • Patent number: 10647798
    Abstract: Disclosed herein are spray-dried catalyst compositions including one or more olefin polymerization catalysts and at least one support of an organosilica material, optionally, with at least one activator. The spray-dried catalyst compositions may be used in polymerization processes for the production of polyolefin polymers.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: May 12, 2020
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Matthew W. Holtcamp, Quanchang Li, David C. Calabro, Gerardo J. Majano Sanchez, Machteld M. Mertens, Charles J. Harlan
  • Patent number: 10647786
    Abstract: This invention relates to a supported catalyst system and process for use thereof. In particular, the catalyst system includes a pyridyldiamido transition metal complex, an activator and a support material. The catalyst system may be used for preparing ultrahigh molecular weight polyolefins.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: May 12, 2020
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Xuan Ye, John R. Hagadorn, Matthew W. Holtcamp, Gregory S. Day, David F. Sanders
  • Patent number: 10647640
    Abstract: Systems and methods are provided for forming para-xylene from aromatics-containing streams having reduced or minimized amounts of C2+ side chains. Reduced or minimized amounts of C2+ side chains can provide benefits for improving and/or allowing modification of transalkylation conditions, xylene isomerization conditions, or a combination thereof. Such aromatics-containing streams can be formed, for example, by conversion of methyl halide, methanol, syngas, and/or dimethyl ether to aromatics by an aromatic conversion process. The methyl halide, methanol, syngas, and/or dimethyl ether can be formed by conversion of methane.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: May 12, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael Salciccioli, Hari Nair, Glenn C. Wood, Nikolaos Soultanidis
  • Patent number: 10640583
    Abstract: This invention relates to a catalyst system comprising fluorided silica, alkylalumoxane activator and at least two metallocene catalyst compounds, where the first metallocene is a bridged monocyclopentadienyl group 4 transition metal compound and the second metallocene is a biscyclopentadientyl group 4 transition metal compound, where the fluorided support has not been calcined at a temperature of 400° C. or more, and is preferably produced using a west mixing method, such as an aqueous method.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: May 5, 2020
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Xuan Ye, Matthew W. Holtcamp, Lubin Luo, Laughlin G. McCullough, Gregory S. Day, Francis C. Rix, Jo Ann M. Canich, David F. Sanders, Matthew S. Bedoya
  • Patent number: 10633527
    Abstract: Provided is a composition having 70 wt % to 90 wt % of a first propylene-olefin copolymer component having an ethylene content of 15 to 21 wt %; and 10 wt % to 30 wt % of a second propylene-olefin copolymer component having an ethylene content of 6 to 10 wt %; wherein the weight average molecular weight of the first component is 250,000 to 1,780,000 g/mol higher than the weight average molecular weight of the second component; wherein the reactivity ratio product of the first component is less than 0.75; wherein the reactivity ratio product of the second component is greater than or equal to 0.75.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: April 28, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Alexander I. Norman, Gregory K. Hall, John R. Hagadorn, Andy H. Tsou, Peijun Jiang, Ying Ying Sun, Sarah J. Mattler, Arturo Leyva
  • Patent number: 10633565
    Abstract: The present invention is related to an adhesive composition comprising a 30-80 wt % polymer blend and 2 to about 20 wt % of an oil. The blend has a first and second propylene-based polymer, both different homopolymers of propylene or a copolymer of propylene and ethylene or a C4 to C10 alpha-olefin.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: April 28, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jennifer J. Austin, Jurgen J. M. Schroeyers
  • Patent number: 10633526
    Abstract: Provided is a composition having 60 wt % to 95 wt % of a first propylene alpha-olefin copolymer component having a reactivity ratio product of less than 0.75 and a weight average molecular weight of greater than about 450,000 g/mol; and 5 wt % to 40 wt % of a second propylene alpha-olefin copolymer component having a reactivity ratio of greater than 1.5 and a weight average molecular weight of less than about 215,000 g/mol.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: April 28, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Andy H. Tsou, Alexander I. Norman, John R. Hagadorn, Gabor Kiss, Peijun Jiang, Sarah J. Mattler
  • Patent number: 10626064
    Abstract: Processes for producing neopentane are disclosed herein. Processes comprise demethylating a C6-C8 alkane within a shell and tube reactor to produce a demethylation product including at least 10 wt % neopentane based on the weight of the demethylation product.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: April 21, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Etienne Mazoyer, Kevin B. Daly, Helge Jaensch, James R. Lattner
  • Patent number: 10626200
    Abstract: This invention relates to the use of quinolinyldiamido transition metal complexes and catalyst systems with an activator and a metal hydrocarbenyl chain transfer agent, such as an aluminum vinyl-transfer agent (AVTA), to produce branched propylene-ethylene-diene terpolymers.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: April 21, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John R. Hagadorn, Jo Ann M. Canich, Andy H. Tsou, Narayanaswami Dharmarajan, Peijun Jiang, Rhutesh K. Shah