Patents Assigned to Finisar Corporation
  • Patent number: 9545033
    Abstract: A communication assembly can include: a module device; a cage having a body defining a first open end that is configured to receive the module device therethrough and the body defining one or more first receiver members between the first end and a second end opposite of the first end, the one or more first receiver members having a first part of fastening system (e.g., two-part fastening system); and a heat sink adapted to be received into the cage so as to be thermally coupled with the module device, the heat sink having a body defining one or more second receiver members configured to receive the one or more first receiver members, the one or more second receiver members having a second part of the fastening system that couples with the first part of the fastening system.
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: January 10, 2017
    Assignee: FINISAR CORPORATION
    Inventor: Long Van Nguyen
  • Patent number: 9544057
    Abstract: The present invention relates to an interconnect structure for coupling at least one electronic unit for outputting and/or receiving electric signals, and at least one optical unit for converting said electric signals into optical signals and/or vice versa, to a further electronic component. The interconnect structure comprises an electrically insulating substrate (102) and a plurality of signal lead pairs (104, 120) to be coupled between said electronic unit (108, 116) and a front end contact region (106) for electrically contacting said interconnect structure by said further electronic component.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: January 10, 2017
    Assignee: FINISAR CORPORATION
    Inventors: Andrei Kaikkonen, Lennart Lundquist, Lars-Goete Svensson, Robert Smith
  • Patent number: 9538637
    Abstract: Multichannel RF Feedthroughs. In some examples, a multichannel RF feedthrough includes an internal portion and an external portion. The internal portion includes a top surface on which first and second sets of traces are formed. Each set of traces is configured as an electrical communication channel to carry electrical data signals. The external portion includes a bottom surface on which the first set of traces is formed and a top surface on which the second set of traces is formed. A set of vias connects the first set of traces between the top surface of the internal portion and the bottom surface of the external portion.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: January 3, 2017
    Assignee: FINISAR CORPORATION
    Inventors: Yan yang Zhao, Bernd Huebner, Tengda Du, Yuheng Lee
  • Patent number: 9525448
    Abstract: An example embodiment includes a snap-mountable optoelectronic module. The module includes a frame, a cover, and a module latch. The frame includes two or more post blocks that each defines a module latch receiver. The cover is configured to at least partially enclose an inner assembly and includes a module latch recess. The module latch includes pivots and a latch portion. The pivots are received in the module latch receivers such that the module latch is configurable in an unlatched position and in a latched position. In the unlatched position, the latch portion is disengaged from the module latch recess. In the latched position, the latch portion is engaged with the module latch recess to retain the cover relative to the frame.
    Type: Grant
    Filed: May 21, 2015
    Date of Patent: December 20, 2016
    Assignee: FINISAR CORPORATION
    Inventor: Cindy H. Hsieh
  • Patent number: 9526185
    Abstract: A hybrid printed circuit board may include a top layer, a bottom layer, and a plurality of internal layers stacked up between the top layer and the bottom layer. The plurality of internal layers may include a first internal layer below the top layer and a second internal layer above the bottom layer. The hybrid printed circuit board may include first unreinforced laminate placed between the top layer and the first internal layer. The hybrid circuit board may additionally include second unreinforced laminate placed between the second internal layer and the bottom layer. The hybrid printed circuit board may include third laminate placed between adjacent internal layers of the plurality of internal layers.
    Type: Grant
    Filed: April 8, 2014
    Date of Patent: December 20, 2016
    Assignee: FINISAR CORPORATION
    Inventors: Henry Meyer Daghighian, Steven C. Bird, Gerald Douglas Babel
  • Patent number: 9520662
    Abstract: Latching mechanisms for pluggable electronic devices when received within a host cage of a host device. In one example embodiment, the host cage is configured to be connected to a host printed circuit board and configured to at least partially surround a host connector. The host cage includes a pair of inwardly biased leaf springs that extend toward the host connector and thereby engage with the latching mechanism of the pluggable electronic module in order to secure the pluggable electronic module within the host cage.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: December 13, 2016
    Assignee: FINISAR CORPORATION
    Inventor: Long Van Nguyen
  • Patent number: 9520943
    Abstract: An example embodiment includes a system for communicating an optical signal. The system includes an optical transmitter and an optical receiver. The optical transmitter includes one or more lasers configured to produce a light signal and a transmitter optical sub assembly (TOSA) receptacle. The TOSA receptacle optically couples the lasers to an optical fiber and launches a quasi-multimode optical signal (quasi-MM signal) that includes at least one lower order mode optical signal and at least one higher order mode optical signal onto the optical fiber. The optical receiver is connected to the optical fiber via a receiver optical sub assembly (ROSA) receptacle. The optical receiver is configured to receive the quasi-MM signal and to substantially block the at least one higher order mode optical signal.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: December 13, 2016
    Assignee: FINISAR CORPORATION
    Inventors: Samir Sheth, Jonathan P. King, T.H. Ola Sjolund, Xiaojie Xu, Tengda Du, Steffen Koehler
  • Patent number: 9515746
    Abstract: An optically enabled multi-chip module has an optical engine transceiver and a host system chip. The optical engine transceiver has an optical engine front-end and an optical engine macro. The optical engine front-end has multiple laser diodes, laser driver circuitry electrically interfaced with each of the laser diodes, multiple photodiodes, amplifier circuitry electrically interfaced with each of the photodiodes, and at least one optical element optically positioned between the laser diodes and at least one optical fiber and between the photodiodes and the at least one optical fiber. The at least one optical element optically interfaces the laser diodes and photodiodes with the optical fiber. The optical engine macro is both electrically interfaced with and physically segregated from the optical engine front-end. The optical engine macro provides a subset of optical transceiver functionality to the optical engine front-end. The host system chip is electrically interfaced with the optical engine transceiver.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: December 6, 2016
    Assignee: FINISAR CORPORATION
    Inventors: Frank J. Flens, Daniel Mahgerefteh, Theā€² Linh Nguyen, Jimmy Alan Tatum
  • Patent number: 9507237
    Abstract: A differential TWE MZM includes a differential driver, first and second capacitors, and first and second terminations. The differential driver includes a first differential output and a second differential output that collectively form a differential pair. The first differential output is DC coupled to a cathode of a first arm optical phase shifter of a TWE MZM. The second differential output is DC coupled to a cathode of a second arm optical phase shifter of the TWE MZM. The first capacitor AC couples the second differential output to an anode of the first arm optical phase shifter. The second capacitor AC couples the first differential output to an anode of the second arm optical phase shifter. The first and second terminations are coupled to the cathode and the anode of, respectively, the first or second arm optical phase shifter.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: November 29, 2016
    Assignee: FINISAR CORPORATION
    Inventor: Gilles P. Denoyer
  • Publication number: 20160344508
    Abstract: An optical network element for a hardware configured optical network includes a first optical port that receives an input optical signal comprising receive control information from the hardware configured optical network. A demodulator optically coupled to the first optical port decodes the receive control information for configuring the optical network element. A modulator having an electrical modulation input that receives transmit control information imparts a modulation onto an optical carrier thereby generating a transmit optical control signal representing the transmit control information. A second optical port transmits the transmit optical control signal representing the transmit control information to the hardware configured optical network.
    Type: Application
    Filed: May 20, 2015
    Publication date: November 24, 2016
    Applicant: FINISAR CORPORATION
    Inventor: John DeAndrea
  • Patent number: 9494810
    Abstract: Embodiments include a method and apparatus used for automatic bias stabilization of a DP IQM based on MZM for transmitting DP-QPSK optical data and/or DP-16QAM optical data. The apparatus simultaneously dithers DC-bias voltages of in-phase child, quadrature-phase child, and parent MZMs with three different dither patterns in time-domain which are mutually orthogonal to each other in the frequency-domain for X and Y polarization IQ modulators. Tap monitor photodiodes detect an interference term between these three dither patterns for each polarization. The interference term is sampled using an ADC in the time domain. The time-synchronous detection method may solve a set of three simultaneous linear partial differential equations with three unknowns to compute controlled DC-bias voltages to set on the respective MZM with a solution set which may iteratively converge to a unique solution, thereby biasing the child MZM in dual-polarization IQM to transmission minimum and parent MZM in quadrature transmission.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: November 15, 2016
    Assignee: FINISAR CORPORATION
    Inventors: Suhas P. Bhandare, Mark Colyar, David Meloche, Terence D. Grenda, Chris Stook, Heider N. Ereifej, John DeAndrea
  • Patent number: 9490895
    Abstract: Described herein is an optical channel monitor (1) including a protective housing (3), an input port (5) disposed in the housing (3) and configured for receiving at least one input optical signal (7) including one or more optical channels separated by wavelength. A wavelength configurable laser (9) is located within the housing (3) and is configured to provide an optical reference signal (11) at a first wavelength (?r). The laser (9) is adapted to scan across a range of wavelengths covering the one or more optical channels. An optical mixing module (13) is coupled to the input port (5) and the laser (9) for mixing the input optical signal (7) with the optical reference signal (11) to produce a mixed output signal. A receiver module (15) is configured to receive the mixed output signal and extract signal information indicative of at least the optical power of the at least one input optical signal at the first wavelength (?r).
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: November 8, 2016
    Assignee: Finisar Corporation
    Inventors: Steven James Frisken, Cibby Pulikkaseril, Simon Poole
  • Patent number: 9485018
    Abstract: An example embodiment includes an optical transmission device. The optical transmission device includes an optical source, a collimator lens, and an optical monitor. The optical source is configured to transmit a channel of light. The collimator lens is configured to reflect a portion of the channel of light. The optical monitor is arranged to receive at least a first portion of the reflected channel of light directly from the collimator lens, and is configured to communicate a gross electrical signal representative of received light including the first portion of the reflected channel of light.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: November 1, 2016
    Assignee: FINISAR CORPORATION
    Inventor: Frank Flens
  • Patent number: 9466943
    Abstract: A TOSA can include: a light emitting element; and one or more heating elements thermally coupled to the light emitting element so as to provide a substantially constant heat generation profile and/or temperature profile across the TOSA during a light emitting element dormant period and a light emitting element firing period. The TOSA can include a controller operably coupled with the one or more heating elements so as to control the substantially constant heat generation profile and/or temperature profile. In one aspect, the one or more heating elements can include one or more dedicated heating elements. In one aspect, the one or more of the dedicated heating elements can include a resistor element or coil.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: October 11, 2016
    Assignee: FINISAR CORPORATION
    Inventors: T. H. Ola Sjolund, Idan Mizrahi
  • Patent number: 9467153
    Abstract: In an example embodiment, a phase-locked loop circuit may include a first circuitry to receive a reference signal and a source signal. The first circuitry may generate a correction signal for demonstrating a difference in phase between the reference signal and the source signal. The phase-locked loop may include a second circuitry to receive the correction signal. The second circuitry may generate a digital signal for demonstrating a phase-to-digital conversion of the correction signal. The phase-locked loop may include a third circuitry to receive the digital signal. The third circuitry may generate a control signal for demonstrating a converted voltage of the digital signal. The phase-locked loop may include a fourth circuitry to receive the control signal. The fourth circuitry may generate the source signal in response to the control signal.
    Type: Grant
    Filed: April 20, 2015
    Date of Patent: October 11, 2016
    Assignee: FINISAR CORPORATION
    Inventors: The'Linh Nguyen, Steven Gregory Troyer, Daniel K. Case
  • Publication number: 20160291405
    Abstract: Described herein is a spatial light modulator (15) for modulating the phase, retardation or polarization state of an incident optical signal propagating in a first dimension. The optical phase modulator (15) includes a liquid crystal material (17) and a pair of electrodes (19 and 21) for supplying an electric potential across the liquid crystal material (17) to drive liquid crystals in a predetermined configuration. Modulator (15) also includes a diffractive optical element (29) disposed adjacent a first electrode (19). Element (29) includes a first array of diffractive elements (31) formed of a first material having a first refractive index and extending in a second dimension substantially perpendicular to the first dimension. Elements (31) are at least partially surrounded by a second material (33) formed of a lower refractive index.
    Type: Application
    Filed: November 13, 2014
    Publication date: October 6, 2016
    Applicant: Finisar Corporation
    Inventors: Steven James Frisken, Qihong Wu
  • Patent number: 9437912
    Abstract: In an example embodiment, an electronics package includes one or more insulating layers and an electrically conductive transmission line. The electrically conductive transmission line includes a signal trace disposed substantially parallel to the one or more insulating layers. The electrically conductive transmission line further includes one or more signal vias electrically coupled to the signal trace. The one or more signal vias are configured to pass through at least a portion of the one or more insulating layers. The electronics package further includes one or more electrically conductive ground planes substantially parallel to the one or more insulating layers. The ground planes include one or more signal via ground cuts. The one or more signal via ground cuts provide clearance between the one or more signal vias and the one or more ground planes.
    Type: Grant
    Filed: April 20, 2015
    Date of Patent: September 6, 2016
    Assignee: FINISAR CORPORATION
    Inventors: Yunpeng Song, Yongsheng Liu, Hongyu Deng
  • Patent number: 9438460
    Abstract: A method of transmitting data may include converting a stream of serial data bits into a set of parallel quadrature amplitude modulation (QAM) symbols. The method may additionally include applying a partial discrete Fourier transform-spread technique to transform a block of low-frequency subcarriers into a single-carrier QAM signal. The single-carrier QAM signal may bear information of a first subset of QAM symbols from the set of parallel QAM symbols. The method may additionally include transforming one or more remaining QAM symbols to form one or more subcarriers. Each of the one or more subcarriers may bear information of a corresponding QAM symbol from the one or more remaining QAM symbols. The method may additionally include generating a hybrid signal that includes the single-carrier QAM signal and the one or more subcarriers. The method may additionally include transmitting the hybrid signal.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: September 6, 2016
    Assignee: FINISAR CORPORATION
    Inventors: William Ling, Ilya Lyubomirsky
  • Patent number: 9438354
    Abstract: A method to measure and report electromagnetic radiation power includes receiving electromagnetic radiation and generating an electrical signal having a magnitude based on the power of the electromagnetic radiation. An adjustable gain may be applied to the electrical signal to generate an amplified electrical signal that may be sampled to generate a digital sample. The adjustable gain may be controlled based on the value of the digital sample and the digital sample may be associated with a gain value. One or more calibration factors may be selected based on the gain value associated with the digital sample and the selected calibration factor(s) may be used to calculate the power of the electromagnetic radiation.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: September 6, 2016
    Assignee: FINISAR CORPORATION
    Inventor: Lucy G. Hosking
  • Patent number: 9423579
    Abstract: Some embodiments include a latch mechanism and an optoelectronic module that includes the latch mechanism. The latch mechanism may include a driver, a follower, a pivot member, and a cam member. The driver may be configured to rotate relative to a housing of the optoelectronic module about an axis of rotation. The follower may be configured to be slidably positioned relative the housing. The follower may include a resilient member configured to interface with the housing and may define an opening including a protuberance. The pivot member may be coupled to the driver or to the housing and may define the axis of rotation. The cam member may be coupled to the driver and may be configured to engage the follower from within the opening so as to urge the follower to slide relative to the housing as the driver is rotated between a latched position and an unlatched position.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: August 23, 2016
    Assignee: FINISAR CORPORATION
    Inventor: Demetrios Koutrokois