Patents Assigned to Finisar Corporation
  • Patent number: 9788417
    Abstract: An example embodiment includes optoelectronic module. The optoelectronic module may include a lens assembly, a module board, heat-generating components, and a thermally conductive plate. The lens assembly may be secured to the module board. The module board may include a printed circuit board (PCB). The heat-generating components may be mounted to the PCB. The thermally conductive plate may be secured to a surface of the module board. The thermally conductive plate may define an opening that receives at least a portion of the lens assembly. The thermally conductive plate may be configured to absorb at least a portion of thermal energy generated during operation of the heat-generating components and to transfer the thermal energy away from the heat-generating components.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: October 10, 2017
    Assignee: FINISAR CORPORATION
    Inventors: Cindy H. Hsieh, Frank J. Flens, Ziv Lipkin
  • Patent number: 9772467
    Abstract: A method may include selecting a transistor-outline can (TO-can) assembly cap. The method may further include welding the TO-can assembly cap to a rim that surrounds an optical opening of an optical subassembly box (OSA) such that the TO-can assembly cap hermetically seals the optical opening and allows optical signals to pass through the TO-can assembly cap and the optical opening.
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: September 26, 2017
    Assignee: FINISAR CORPORATION
    Inventors: Maziar Amirkiai, Hongyu Deng
  • Patent number: 9767757
    Abstract: An example embodiment includes a LCOS IC. The LCOS IC includes multiple pixels, a column driver, and multiple conductive lines. The pixels are arranged in a pixel array. The column driver is configured to supply multiple signals to a column of pixels included in the pixel array. Each of the conductive lines couples the column driver to a subset of pixels in the column of pixels. The conductive lines are configured such that two or more of the signals can be supplied to two or more of the subsets of pixels with some overlapping duration.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: September 19, 2017
    Assignee: FINISAR CORPORATION
    Inventors: Jonathan B. Ashbrook, Nicholas F. Jungels
  • Patent number: 9762027
    Abstract: A VCSEL can include: an electro-optic modulator between a lasing active region and a light emitting surface. The electro-optic modulator can include: an electro-optically active region; a modulator mirror region over the electro-optically active region; and at least one electrical insulator region separating the modulator mirror region into at least two separate modulator mirror cavities electrically isolated from each other, wherein each separate modulator mirror cavity and a longitudinally aligned portion of the electro-optically active region form an electro-optic modulator cavity. A method of emitting light from a VCSEL can include: emitting a laser beam from the lasing active region along a longitudinal axis; and changing a refractive index of one electro-optic modulator cavity so as to steer the laser beam from the longitudinal axis.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: September 12, 2017
    Assignee: FINISAR CORPORATION
    Inventor: Ralph Herbert Johnson
  • Patent number: 9726838
    Abstract: An optical fiber securing device may include a passage, an optical fiber seat, and a boundary portion. The passage may have an entrance and an exit, the passage configured to receive therein an optical fiber inserted through the entrance, as well as an epoxy. An epoxy path may be provided as a pathway between an epoxy well and the passage. The optical fiber seat may be configured to receive at least a portion of the optical fiber, the optical fiber seat configured to position an end of the optical fiber in optical alignment with a lens. The boundary portion may define an upper boundary of the passage at the exit of the passage, and is configured to restrain epoxy received within the passage such that the epoxy does not become interposed between the end of the optical fiber and the lens.
    Type: Grant
    Filed: February 22, 2016
    Date of Patent: August 8, 2017
    Assignee: FINISAR CORPORATION
    Inventors: David Lee, Daniel Kossowski, Frank J. Flens, William H. Wang, Michael Joseph McReynolds, Jr.
  • Publication number: 20170222725
    Abstract: A method and apparatus for characterizing and compensating optical impairments in an optical transmitter includes operating an optical transmitter comprising a first and second parent MZ, each comprising a plurality of child MZ modulators that are biased at respective initial operating points. An electro-optic RF transfer function is generated for each of the plurality of child MZ modulators. Curve fitting parameters are determined for each of the plurality of electro-optic RF transfer functions and operating points of each child MZ modulator are determined using the curve fitting parameters. An IQ power imbalance is determined using the curve fitting parameters. Initial RF drive power levels are determined that compensate for the determined IQ power imbalance. The XY power imbalance is determined for initial RF drive power levels using the curve fitting parameters.
    Type: Application
    Filed: April 16, 2017
    Publication date: August 3, 2017
    Applicant: Finisar Corporation
    Inventors: Suhas P. Bhandare, Heider N. Ereifej, Ihab E. Khalouf, Mark Colyar
  • Patent number: 9723725
    Abstract: In an example embodiment, a circuit interconnect includes a first printed circuit board (PCB), a second PCB, a spacer, and an electrically conductive solder joint. The first PCB includes a first electrically conductive pad. The second PCB includes a second electrically conductive pad. The spacer is configured to position the first PCB relative to the second PCB such that a space remains between the first PCB and the second PCB after the first electrically conductive pad and the second electrically conductive pad are conductively connected in a soldering process. The electrically conductive solder joint conductively connects the first electrically conductive pad and the second electrically conductive pad.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: August 1, 2017
    Assignee: FINISAR CORPORATION
    Inventor: Wei Shi
  • Publication number: 20170214482
    Abstract: Described herein is a wavelength selective switch (WSS) type optical switching device (1) configured for switching input optical beams from input optical fiber ports (3, 5 and 7) to an output optical fiber port (9). Device (1) includes a wavelength dispersive grism element (13) for spatially dispersing the individual wavelength channels from an input optical beam in the direction of a second axis (y-axis). The optical beams propagate from input ports (3, 5 and 7) in a forward direction and are reflected from a liquid crystal on silicon (LCOS) device (11) in a return direction to output port (9). The input optical beams are transmitted through a port selecting module (21), which provides polarization diversity to device (1) and provides capability to restrict optical beams returning from LCOS device (11) from being coupled back into input ports (3, 5 and 7).
    Type: Application
    Filed: April 8, 2017
    Publication date: July 27, 2017
    Applicant: Finisar Corporation
    Inventor: Steven James Frisken
  • Patent number: 9715115
    Abstract: An example demultiplexer may include at least one dispersive element that is common to multiple wavelength channels. The demultiplexer may additionally include multiple field lenses positioned optically downstream from the at least one dispersive element, where a number of the field lenses is equal to a number of the wavelength channels. An example multiplexer may include a single piece power monitor assembly that includes a collimator lens array, a focusing lens array, and a slot integrally formed therein. The collimator lens array may be positioned to receive multiple wavelength channels from a laser array. The focusing lens array may be positioned to focus multiple portions of the wavelength channels onto an array of photodetectors. The slot may be configured to tap the portions from the wavelength channels collimated into the single piece power monitor assembly by the collimator lens array and to direct the portions toward the focusing lens array.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: July 25, 2017
    Assignee: FINISAR CORPORATION
    Inventors: Sascha Hallstein, Cindy Hsieh, Brendan Hamel-Bissell
  • Patent number: 9709760
    Abstract: One example embodiment includes an optical subassembly (OSA). The OSA includes a flex circuit, an optical port, and an active optical component subassembly. The flex circuit is constructed of at least one electrically-conductive layer and at least one electrical insulator layer. The optical port defines a barrel cavity and is mechanically coupled to the flex circuit at a flex connection. The active optical component subassembly is positioned within the barrel cavity and electrically coupled to the flex circuit.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: July 18, 2017
    Assignee: FINISAR CORPORATION
    Inventors: Brent Stapleton, Rajeev Dwivedi, Harold Young Walker, Jr., Gary Landry
  • Patent number: 9709763
    Abstract: In an embodiment, a pluggable connector configured to removably couple an end of an optical cable to an optoelectronic module includes a first portion and a second portion. The first portion is configured to engage a latch slot of the optoelectronic module to retain within the optoelectronic module a ferrule optically coupled to optical fibers of the optical cable. The second portion is configured to engage the ferrule to prevent removal of the ferrule from within the optoelectronic module when the first portion engages the latch slot.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: July 18, 2017
    Assignee: Finisar Corporation
    Inventors: William H. Wang, Joshua John Edward Moore, Shyue-Yang Wang
  • Patent number: 9705503
    Abstract: A circuit may include an input terminal configured to receive an input signal with a first voltage swing and an output terminal. The circuit may also include a first transistor, a second transistor, a third transistor, and a control circuit. The control circuit may be coupled to the input terminal, a gate terminal of the first transistor, and a gate terminal of the second transistor. The control circuit may be configured to adjust voltages provided to the gate terminals based on the input signal such that the first transistor conducts in response to the input signal being at a first logical level and the second transistor conducts in response to the input signal being at a second logical level to generate an output signal output on the output terminal. The second voltage swing of the output signal may be different from the first voltage swing of the input signal.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: July 11, 2017
    Assignee: FINISAR CORPORATION
    Inventor: The'Linh Nguyen
  • Patent number: 9703042
    Abstract: Transmissive diffraction grating(s), reflector(s), and multiple optical sources/receivers are arranged such that each one of multiple optical signals at corresponding different wavelengths co-propagating along a multiplexed beam path would: (i) be transmissively, dispersively diffracted at a multiplexed transmission region of a grating; (ii) propagate between the multiplexed transmission region and multiple demultiplexed transmission regions of a grating undergoing reflection(s) from the reflector(s); (iii) be transmissively, dispersively diffracted at the demultiplexed transmission regions; and (iv) propagate between the demultiplexed transmission regions and the sources/receivers along multiple demultiplexed beam paths.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: July 11, 2017
    Assignee: Finisar Corporation
    Inventors: Thomas W. Mossberg, Christoph M. Greiner, Dmitri Iazikov
  • Patent number: 9703044
    Abstract: A system may include a first light source configured to generate a first beam of light at a first wavelength; a second light source configured to generate a second beam of light at a second wavelength; a third light source configured to generate a third beam of light at a third wavelength; and a fourth light source configured to generate a fourth beam of light at a fourth wavelength. The system may also include a thin-film filter, a first polarization beam splitter (PBS), a wave plate and a second PBS. The thin-film filter, the first PBS, the wave plate, and the second PBS may be configured to combine the first beam, the second beam, the third beam and the fourth beam into a combined beam of light.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: July 11, 2017
    Assignee: FINISAR CORPORATION
    Inventors: Xiaogang Hong, Tao Wu, Fei Li, Chunxiang Zhang, Shanshan Zeng, Hongyu Deng
  • Patent number: 9692547
    Abstract: In some aspects, an example method may include receiving, at a receiver of a first optoelectronic module, a loss of signal indicator from a second optoelectronic module that is remote from the first optoelectronic module. The method may include iteratively cycling through transmission of optical signals on a plurality of wavelength channels to the second optoelectronic module until the loss of signal indicator terminates in response to receiving the loss of signal indicator. The method may include continuing to transmit the optical signal on a particular one of the plurality of wavelength channels in response to the loss of signal indicator terminating while transmitting an optical signal on the particular one of the plurality of wavelength channels.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: June 27, 2017
    Assignee: FINISAR CORPORATION
    Inventors: Mingshou He, Huade Shu, Jing Li, Bin Ma, Ronghua Jin
  • Patent number: 9692518
    Abstract: A DP-QPSK optical transmitter includes an outer MZM comprising a first parent MZM comprising a first child MZM and a second child MZM that modulates a QPSK signal with a first polarization. A second parent MZM includes a first child MZM and a second child MZM that modulates a QPSK signal with a second polarization. The outer Mach-Zehnder modulator multiplexes the first and second polarization embedded into a dual-polarization QPSK signal generation. A first optical detector detects the QPSK signal generated by the first parent MZM with the first polarization. A second optical detector optical detects the QPSK signal generated by the second parent Mach-Zehnder modulator with the second polarization. A bias control circuit generates bias signals on at least one output that stabilize the DP-QPSK signal in response to signals generated by the first and second optical detector using electrical time division multiplexing.
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: June 27, 2017
    Assignee: Finisar Corporation
    Inventors: Suhas P. Bhandare, Heider N. Ereifej, Kyu Kim, Mark Colyar
  • Patent number: 9686856
    Abstract: A circuit may include a first transmission line that includes a first first-line conductor configured to transport a signal and a second first-line conductor. The circuit may also include a second transmission line that includes a first second-line conductor, a second second-line conductor electrically coupled to the second first-line conductor, and a third second-line conductor separated from and positioned between the first and second second-line conductors. The third second-line conductor may be electrically coupled to the first first-line conductor. The circuit may also include a conductive jumper electrically coupling the first and second second-line conductors. The conductive jumper may contact the first and second second-line conductors in a position near the coupling of the first and second transmission lines.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: June 20, 2017
    Assignee: FINISAR CORPORATION
    Inventors: Yunpeng Song, Hongyu Deng, Mark Donovan
  • Patent number: 9686862
    Abstract: A capacitor in a multilayer printed circuit board is described. The capacitor may include a via of a via-in-pad type and a dielectric mixture filled in the via of the via-in-pad type. The via may be disposed under an integrated circuit contact pad of the multilayer printed circuit board. The dielectric mixture may include a nanoparticle-sized dielectric powder mixed with an adhesive material.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: June 20, 2017
    Assignee: FINISAR CORPORATION
    Inventor: Henry Meyer Daghighian
  • Patent number: 9681207
    Abstract: An example embodiment includes a liquid crystal on silicon (LCOS) system. The LCOS system includes multiple pixels, a pixel voltage supply source (voltage source), an external buffer, and a local buffer. The voltage source is configured to supply an analog ramp to the pixels. The external buffer is configured to buffer the voltage source from the pixels. The local buffer is configured to buffer the external buffer from a subset of pixels of the plurality of pixels.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: June 13, 2017
    Assignee: FINISAR CORPORATION
    Inventors: Jonathan B. Ashbrook, Lionel Li, Brian R. Carey, Nicholas F. Jungels
  • Patent number: 9671611
    Abstract: An optical cell may include a first port coupled to a second port by an optical path. The optical cell may also include a compensator disposed in the optical path. The compensator may be rotatable about an axis. Rotating the compensator about the axis may vary a distance that the optical path passes through the compensator thereby changing the optical path length of the optical path.
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: June 6, 2017
    Assignee: FINISAR CORPORATION
    Inventors: Fan Chen, Huiping Li, Jiangtao Zhang, Fahua Lan