Patents Assigned to Flir Systems, Inc.
  • Patent number: 9538038
    Abstract: Techniques are provided to implement line based processing of thermal images and a flexible memory system. In one example, individual lines of a thermal image frame may be provided to an image processing pipeline. Image processing operations may be performed on the individual lines in stages of the image processing pipeline. A memory system may be used to buffer the individual lines in the pipeline stages. In another example, a memory system may be used to send and receive data between various components without relying on a single shared bus. Data transfers may be performed between different components and different memories of the memory system using a switch fabric to route data over different buses. In another example, a memory system may support data transfers using different clocks of various components, without requiring the components and the memory system to all be synchronized to the same clock source.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: January 3, 2017
    Assignee: FLIR Systems, Inc.
    Inventors: Weilming Sieh, David W. Dart, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp, Eric A. Kurth
  • Patent number: 9531928
    Abstract: A gimbal assembly may include an imbalance compensation system having a driver operatively connected to a movable weight. A controller may determine a compensating position for the movable weight to counterbalance an effective moment imparted on the gimbal assembly by one or more movable components therein. The controller may command the driver to relocate the movable weight to the compensating position.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: December 27, 2016
    Assignee: FLIR Systems, Inc.
    Inventors: Bruce Ellison, Kevin E. Jones
  • Publication number: 20160366345
    Abstract: Various techniques are provided for implementing an infrared imaging system, especially for low power and small form factor applications. In one example, a system includes a focal plane array (FPA). The FPA includes an array of infrared sensors adapted to image a scene. A low-dropout regulator (LDO) is integrated with the FPA and adapted to provide a regulated voltage in response to an external supply voltage. The FPA also includes a bias circuit adapted to provide a bias voltage to the infrared sensors in response to the regulated voltage. The FPA also includes a read out integrated circuit (ROIC) adapted to provide signals from the infrared sensors corresponding to captured image frames. Other implementations are also provided.
    Type: Application
    Filed: December 18, 2013
    Publication date: December 15, 2016
    Applicant: FLIR Systems, Inc.
    Inventors: Mark Nussmeier, Eric A. Kurth, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp
  • Patent number: 9521289
    Abstract: Techniques are provided to implement line based processing of thermal images and a flexible memory system. In one example, individual lines of a thermal image frame may be provided to an image processing pipeline. Image processing operations may be performed on the individual lines in stages of the image processing pipeline. A memory system may be used to buffer the individual lines in the pipeline stages. In another example, a memory system may be used to send and receive data between various components without relying on a single shared bus. Data transfers may be performed between different components and different memories of the memory system using a switch fabric to route data over different buses. In another example, a memory system may support data transfers using different clocks of various components, without requiring the components and the memory system to all be synchronized to the same clock source.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: December 13, 2016
    Assignee: FLIR Systems, Inc.
    Inventors: David W. Dart, Weilming Sieh, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp, Eric A. Kurth
  • Patent number: 9517679
    Abstract: Techniques are disclosed for systems and methods using small form factor infrared imaging modules to monitor occupants in an interior compartment of a vehicle. For example, a vehicle-mounted system may include one or more infrared imaging modules, a processor, a memory, alarm sirens, and a communication module. The vehicle-mounted system may be mounted on, installed in, or otherwise integrated into a vehicle with an interior compartment. The infrared imaging modules may be configured to capture thermal images of desired portions of the interior compartments. Various thermal image processing and analytics may be performed on the captured thermal images to determine the presence and various attributes of one or more occupants. Based on the determination of the presence and various attributes, occupant detection information or control signals may be generated. Occupant detection information may be used to perform various monitoring operations, and control signals may adjust various vehicle components.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: December 13, 2016
    Assignee: FLIR Systems, Inc.
    Inventors: Jeffrey D. Frank, Austin A. Richards, Victoria L. White, Nile E. Fairfield, Arthur Stout, David W. Lee, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar
  • Patent number: 9513172
    Abstract: An infrared detector useful in, e.g., infrared cameras, includes a substrate having an array of infrared detectors and a readout integrated circuit interconnected with the array disposed on an upper surface thereof, for one or more embodiments. A generally planar window is spaced above the array, the window being substantially transparent to infrared light. A mesa is bonded to the window. The mesa has closed marginal side walls disposed between an outer periphery of a lower surface of the window and an outer periphery of the upper surface of the substrate and defines a closed cavity between the window and the array that encloses the array. A solder seal bonds the mesa to the substrate so as to seal the cavity.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: December 6, 2016
    Assignee: FLIR Systems, Inc.
    Inventors: Gregory A. Carlson, Alex Matson, Andrew Sharpe, Davey Beard, Paul Schweikert, Robert Simes
  • Patent number: 9509924
    Abstract: Various techniques are disclosed for providing a wearable apparatus having an integrated infrared imaging module. In one example, a wearable apparatus implemented as a self-contained breathing apparatus (SCBA) may include a shield to protect a user from an external environment, one or more infrared imaging modules, a projector, a processor, and a communication module for projecting a user-viewable thermal image onto a surface of the shield. Such infrared imaging modules may be positioned internal to the SCBA for protection from a hazardous external environment. In another example, a wearable apparatus implemented as a welding mask may include one or more infrared imaging modules, a projector, a processor, and a communication module, so as to project a user-viewable thermal image onto a surface of a shield of the welding mask, while at the same time protecting these components and the welder's face from a harsh welding environment.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: November 29, 2016
    Assignee: FLIR SYSTEMS, INC.
    Inventors: William A. Terre, Andrew C. Teich, Giovanni Lepore, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar
  • Patent number: 9491376
    Abstract: Various techniques are provided to perform flat field correction for infrared cameras. In one example, a method of calibrating an infrared camera includes calibrating a focal plane array (FPA) of the infrared camera to an external scene to determine a set of flat field correction values associated with a first optical path from the external scene to the FPA. The method also includes estimating a temperature difference between the FPA and a component of the infrared camera that is in proximity to the first optical path. The method also includes determining supplemental flat field correction values based on, at least in part, the first set of flat field correction values, where the supplemental flat field correction values are adjusted based on the estimated temperature difference before being applied to thermal image data obtained with the infrared camera. The method also includes storing the supplemental flat field correction values.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: November 8, 2016
    Assignee: FLIR Systems, Inc.
    Inventors: Joseph L. Kostrzewa, Vu L. Nguyen, Theodore R. Hoelter
  • Patent number: 9473681
    Abstract: A housing for an infrared camera module may be implemented with a substantially non-metal cover configured to substantially or completely enclose various components of an infrared imaging device. A metal layer may be disposed on various interior and/or exterior surfaces of the cover. Such implementations may be used to reduce the effects of various environmental conditions which may otherwise adversely affect the performance of the infrared imaging device. In addition, one or more conductive traces may be built into the housing and/or on interior surfaces of the housing to facilitate the passing of signals from components of the infrared imaging device such as infrared sensors, read out circuitry, a temperature measurement component, and/or other components. One or more fiducial markers may be provided to align various components of the infrared camera module during manufacture.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: October 18, 2016
    Assignee: FLIR Systems, Inc.
    Inventors: Theodore R. Hoelter, Joseph Kostrzewa, Pierre Boulanger, Barbara Sharp, Eric A. Kurth
  • Patent number: 9470779
    Abstract: A wideband sonar receiver is provided that includes: a selectable bandpass filter adapted to filter a received sonar signal to produce a filtered signal and a correlator adapted to correlate the baseband samples with baseband replica samples to provide a correlated signal. In addition, the wideband sonar receiver may include a shaping filter to shape unshaped received pulses. Finally, a variety of sonar processing algorithms are described with regard to reducing clutter and interference, target detection, and bottom detection.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: October 18, 2016
    Assignee: FLIR Systems, Inc.
    Inventors: Paul Stokes, Phil Webb
  • Patent number: 9451183
    Abstract: Techniques using small form factor infrared imaging modules are disclosed. An imaging system may include visible spectrum imaging modules, infrared imaging modules, and other modules to interface with a user and/or a monitoring system. Visible spectrum imaging modules and infrared imaging modules may be positioned in proximity to a scene that will be monitored while visible spectrum-only images of the scene are either not available or less desirable than infrared images of the scene. Imaging modules may be configured to capture images of the scene at different times. Image analytics and processing may be used to generate combined images with infrared imaging features and increased detail and contrast. Triple fusion processing, including selectable aspects of non-uniformity correction processing, true color processing, and high contrast processing, may be performed on the captured images. Control signals based on the combined images may be presented to a user and/or a monitoring system.
    Type: Grant
    Filed: December 21, 2013
    Date of Patent: September 20, 2016
    Assignee: FLIR Systems, Inc.
    Inventors: Nicholas Högasten, Dwight Dumpert, Theodore R. Hoelter, Jeffrey S. Scott, Katrin Strandemar, Mark Nussmeier, Eric A. Kurth, Pierre Boulanger, Barbara Sharp
  • Publication number: 20160246027
    Abstract: An optical barrel assembly includes a barrel having an inner bottom surface and an inner lateral surface extending from the inner bottom surface, the inner bottom and lateral surfaces defining a cylindrical housing, and a first element surrounded by the inner lateral surface of the barrel, wherein an outer perimeter of the first element has a different shape than a perimeter defined by the cylindrical housing.
    Type: Application
    Filed: October 10, 2014
    Publication date: August 25, 2016
    Applicant: FLIR SYSTEMS, INC.
    Inventors: Christopher WILLIS, Craig AKER, Todd RIXMAN, Jeremy HUDDLESTON, David KELLER, Paul GRECO
  • Patent number: 9423494
    Abstract: A sonar transmitter includes digital logic that controls switches coupled to a primary coil of a transformer. The switches are driven to produce at least one voltage pulse across a secondary coil for the transformer to produce a series of voltage pulses approximating the desired signal. The transformer may comprise: a secondary coil having a plurality of windings arranged into a first section, a middle section, and a final section; and a primary coil winding wound only with the secondary coil windings forming the middle section.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: August 23, 2016
    Assignee: FLIR Systems, Inc.
    Inventors: Paul Stokes, David Wellcome
  • Publication number: 20160203694
    Abstract: Infrared imaging systems and methods disclosed herein, in accordance with one or more embodiments, provide for an infrared camera system comprising a protective enclosure and an infrared image sensor adapted to capture and provide infrared images of areas of a structure. The infrared camera system includes a processing component adapted to receive the infrared images of the areas of the structure from the infrared image sensor, process the infrared images of the areas of the structure by generating thermal information, and store the thermal information in a memory component for analysis.
    Type: Application
    Filed: August 22, 2013
    Publication date: July 14, 2016
    Applicant: FLIR Systems, Inc.
    Inventors: Nicholas Högasten, Mary L. Deal, Arthur J. McGowan, JR., Jeffrey D. Frank, Andrew C. Teich, Thomas W. Rochenski, Thomas J. Scanlon
  • Patent number: D760210
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: June 28, 2016
    Assignee: FLIR Systems, Inc.
    Inventors: Zhenmei Mao, Jeffrey D. Frank, Michael Kent, William B. Hasbrook
  • Patent number: D760211
    Type: Grant
    Filed: January 4, 2014
    Date of Patent: June 28, 2016
    Assignee: FLIR Systems, Inc.
    Inventors: Zhenmei Mao, Jeffrey D. Frank, Michael Kent, William B. Hasbrook
  • Patent number: D760212
    Type: Grant
    Filed: January 4, 2014
    Date of Patent: June 28, 2016
    Assignee: FLIR Systems, Inc.
    Inventors: Zhenmei Mao, Jeffrey D. Frank, Michael Kent, William B. Hasbrook
  • Patent number: D765081
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: August 30, 2016
    Assignee: FLIR Systems, Inc.
    Inventors: Jeffrey D. Frank, Mao Zhenmei, Li Xiang
  • Patent number: D774584
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: December 20, 2016
    Assignee: FLIR Systems, Inc.
    Inventors: Michael D. Walters, Theodore R. Hoelter, Barbara Sharp
  • Patent number: D776599
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: January 17, 2017
    Assignee: FLIR Systems, Inc.
    Inventor: Christopher R. Page