Patents Assigned to Flir Systems, Inc.
  • Patent number: 9819880
    Abstract: Various techniques are provided for systems and methods to process images to reduce consumption of an available output dynamic range by the sky in images. For example, according to one or more embodiments of the disclosure, a region or area in images that may correspond to the sky may be identified based on the location of the horizon in the images. A distribution of irradiance levels in the identified sky region may be analyzed to determine a dynamic range attributable to the sky region. A transfer function that compresses the dynamic range attributable to the sky region may be generated and applied so that the sky in the images may be suppressed, thereby advantageously preserving more dynamic range for terrestrial objects and other objects of interest in the images.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: November 14, 2017
    Assignee: FLIR Systems, Inc.
    Inventors: Nicholas Högasten, Mark Nussmeier, Eric A. Kurth, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp
  • Patent number: 9813643
    Abstract: Various techniques are disclosed for providing object recognition using thermal imaging. Unique thermal features of an object such as a human face can be detected using a thermal imaging module. The thermal imaging module may be included in an authentication system that performs authentication operations for users of a secure system based on the detected thermal features. The thermal features may include a thermal map of a user's face. An object recognition system such as an authentication system may include a non-thermal imaging module that captures non-thermal images of the object. The object recognition system may recognize objects using thermal images and non-thermal images in separate object recognition operations or by combining the thermal and non-thermal images and performing object recognition operations using the combined image. A thermal imaging authentication system may help eliminate user passwords on phones, tablets, computers and/or other secure access systems.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: November 7, 2017
    Assignee: FLIR Systems, Inc.
    Inventors: William A. Terre, Nicholas Högasten
  • Patent number: 9811884
    Abstract: Various techniques are disclosed to suppress distortion in images (e.g., video or still images), such as distortion caused by atmospheric turbulence. For example, similar image blocks from a sequence of images may be identified and tracked along motion trajectories to construct spatiotemporal volumes. The motion trajectories are smoothed to estimate the true positions of the image blocks without random displacements/shifts due to the distortion, and the smoothed trajectories are used to aggregate the image blocks in their new estimated positions to reconstruct the sequence of images with the random displacements/shifts suppressed. Blurring that may remain within each image block of the spatiotemporal volumes may be suppressed by modifying the spatiotemporal volumes in a collaborative fashion.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: November 7, 2017
    Assignees: FLIR Systems, Inc., Noiseless Imaging Oy LTD
    Inventors: Alessandro Foi, Vladimir Katkovnik, Pavlo Molchanov, Enrique Sánchez-Monge
  • Patent number: 9807319
    Abstract: Wearable systems with thermal imaging capabilities may be provided for detecting the presence and location of persons or animals in an environment surrounding the system in accordance with an embodiment. A wearable system may include a wearable structure such as a helmet with a plurality of imaging modules mounted to the wearable structure. An imaging module may include one or more imaging components such as infrared imaging modules and visible light cameras. Thermal images captured using the infrared imaging modules may be used to detect the presence of a person in the thermal images. The wearable imaging system may include one or more alert components that alert the wearer when a person is detected in the thermal images. The alert components may be used to generate a location-specific alert that alerts the wearer to the location of the detected person. A wearable imaging system may be a multidirectional threat monitoring helmet.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: October 31, 2017
    Assignee: FLIR Systems, Inc.
    Inventors: Andrew C. Teich, Jeffrey D. Frank, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Eric A. Kurth, Barbara Sharp
  • Patent number: 9778285
    Abstract: Various techniques are disclosed for providing electrical current and/or voltage sensor probes or tags integrated with measurement circuitry. For example, an electrical sensor is provided that includes a probe adapted to be arranged to at least partially encircle a conductor to be measured, wherein the probe has a proximal end and a distal end, the proximal end terminating in a base portion that houses measurement circuitry. The base portion may also include electrical components suitable for displaying, wirelessly transmitting, and/or otherwise conveying the measured electrical parameters. In some embodiments, the distal end of the probe may be removably received by the base portion, such that the probe forms a loop encircling the conductor when measuring it. In other embodiments, the probe may resiliently clip on to the conductor. In another example, an electrical sensor includes an attachable tag that can be mounted to the conductor to be measured.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: October 3, 2017
    Assignee: FLIR Systems, Inc.
    Inventor: Michael Fox
  • Patent number: 9774797
    Abstract: Systems and methods may be provided for monitoring electrical equipment. A system may include a camera having an ultraviolet light imaging module, an infrared light imaging module, a visible light imaging module, and a processor that combines image data from one or more of the imaging modules. The processor may detect anomalies such as hot spots, corona discharges or failures in the electrical equipment based on the image data. The system may include motion control components that move the camera with respect to the electrical equipment during monitoring operations. The motion control components may include components of a manned or unmanned vehicle that incorporates the camera.
    Type: Grant
    Filed: April 17, 2015
    Date of Patent: September 26, 2017
    Assignee: FLIR Systems, Inc.
    Inventors: Austin A. Richards, Daniel Pettersson, David Gustafsson
  • Patent number: 9762823
    Abstract: An image sensor may be provided. The image sensor may be a high-capacitance image sensor or a dual-mode image sensor having a high-capacitance operational mode. A high-capacitance image sensor may include image detectors and associated unit cells. During operation, the image sensor may integrate image signals from each detector row using unit cells in multiple unit cell rows. The image sensor may integrate and readout image signals in an interleaved process that allows each detector row to capture image data using multiple unit cells. A dual-mode image sensor may operate in a similar manner to a high-capacitance image sensor when operated in the high-capacitance mode. The dual-mode image sensor may have switches interposed between unit cells to selectively couple and decouple the unit cells for switching between the high-capacitance mode and a normal operational mode.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: September 12, 2017
    Assignee: FLIR SYSTEMS, INC.
    Inventors: Brian Simolon, Eric A. Kurth
  • Patent number: 9756262
    Abstract: Techniques are disclosed for systems and methods using small form factor infrared imaging modules to monitor aspects of a power system. A system may include one or more infrared imaging modules, a processor, a memory, a display, a communication module, and modules to control components of a power system. Infrared imaging modules may be mounted on, installed in, or otherwise integrated with a power system having one or more power system components. The infrared imaging modules may be configured to capture thermal images of portions of the power system. Various thermal image analytics and profiling may be performed on the captured thermal images to determine the operating conditions and temperatures of portions of the power system. Monitoring information may be generated based on the determined conditions and temperatures and then presented to a user of the power system.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: September 5, 2017
    Assignee: FLIR Systems, Inc.
    Inventors: Jeffrey D. Frank, Shawn Jepson, Mark Nussmeier, Eric A. Kurth, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp
  • Patent number: 9756264
    Abstract: Various techniques are provided to identify anomalous pixels in images captured by imaging devices. In one example, an infrared image frame is received. The infrared image frame is captured by a plurality of infrared sensors based on infrared radiation passed through an optical element. A pixel of the infrared image frame is selected. A plurality of neighborhood pixels of the infrared image frame are selected. Values of the selected pixel and the neighborhood pixels are processed to determine whether the value of the selected pixel exhibits a disparity in relation to the neighborhood pixels that exceeds a maximum disparity associated with a configuration of the optical element and the infrared sensors. The selected pixel is selectively designated as an anomalous pixel based on the processing.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: September 5, 2017
    Assignee: FLIR Systems, Inc.
    Inventors: Theodore R. Hoelter, Nicholas Högasten, Malin Ingerhed, Mark Nussmeier, Eric A. Kurth, Katrin Strandemar, Pierre Boulanger, Barbara Sharp
  • Patent number: 9741591
    Abstract: An apparatus for the wafer level packaging (WLP) of micro-bolometer vacuum package assemblies (VPAs), in one embodiment, includes a wafer alignment and bonding chamber, a bolometer wafer chuck and a lid wafer chuck disposed within the chamber in vertically facing opposition to each other, means for creating a first ultra-high vacuum (UHV) environment within the chamber, means for heating and cooling the bolometer wafer chuck and the lid wafer chuck independently of each other, means for moving the lid wafer chuck in the vertical direction and relative to the bolometer wafer chuck, means for moving the bolometer wafer chuck translationally in two orthogonal directions in a horizontal plane and rotationally about a vertical axis normal to the horizontal plane, and means for aligning a fiducial on a bolometer wafer held by the bolometer wafer chuck with a fiducial on a lid wafer held by the lid wafer chuck.
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: August 22, 2017
    Assignee: FLIR Systems, Inc.
    Inventors: Paul Schweikert, Andrew Sharpe, Gregory A. Carlson, Alex Matson, Scott Vilander, Bob Zahuta, Richard M. Goeden
  • Patent number: 9726882
    Abstract: Optical system comprising a motor, an optical element, an optical detector, and a linkage that connects operation of the motor to movement of the optical element and the optical detector relative to one another. The linkage may include a shaft and a drive element that operatively connects the shaft to another part of the linkage. In some embodiments, the drive element may include a clamp having a base and a retainer that compressively secure the drive element to the shaft by engagement of a cylindrical surface region of the shaft with the base and engagement of a flat surface region of the shaft with the retainer. In some embodiments, the drive element may include a collar secured to the shaft with a fastener disposed in threaded engagement with a transverse hole defined by the shaft.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: August 8, 2017
    Assignee: FLIR Systems, Inc.
    Inventor: Kevin E. Jones
  • Patent number: 9729802
    Abstract: Systems and methods disclosed herein provide for some embodiments infrared camera systems for maritime applications. For example in one embodiment, a watercraft includes a plurality of image capture components coupled to the watercraft to capture infrared images around at least a substantial portion of a perimeter of the watercraft; a memory component adapted to store the captured infrared images; a processing component adapted to process the captured infrared images according to a man overboard mode of operation to provide processed infrared images and determine if a person falls from the watercraft; and a display component adapted to display the processed infrared images.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: August 8, 2017
    Assignee: FLIR Systems, Inc.
    Inventors: Jeffrey D. Frank, Patrick B. Richardson, James T. Woolaway, Austin A. Richards, Nicholas Högasten
  • Patent number: 9723228
    Abstract: Various techniques are disclosed for providing an infrared imaging module that exhibits a small form factor and may be used with one or more portable devices. Such an infrared imaging module may be implemented with a housing that includes electrical connections that may be used to electrically connect various components of the infrared imaging module. In addition, various techniques are disclosed for providing system architectures for processing modules of infrared imaging modules. In one example, a processing module of an infrared imaging module includes a first interface adapted to receive captured infrared images from an infrared image sensor of the infrared imaging module. The processing module may also include a processor adapted to perform digital infrared image processing on the captured infrared images to provide processed infrared images. The processing module may also include a second interface adapted to pass the processed infrared images to a host device.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: August 1, 2017
    Assignee: FLIR Systems, Inc.
    Inventors: Pierre Boulanger, Theodore R. Hoelter, Barbara Sharp, Eric A. Kurth
  • Patent number: 9723227
    Abstract: Various techniques are disclosed for performing non-uniformity correction (NUC) for infrared imaging devices. Intentionally blurred image frames may be obtained and processed to correct for FPN (e.g., random spatially uncorrelated FPN in one embodiment) associated with infrared sensors of the infrared imaging device. Intentionally blurred image frames may be used to distinguish between FPN associated with the infrared sensors and desired scene information. Advantageously, such techniques may be implemented without requiring the use of a shutter to perform flat field correction for the infrared imaging device.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: August 1, 2017
    Assignee: FLIR Systems, Inc.
    Inventors: Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar
  • Patent number: 9716843
    Abstract: Techniques are disclosed for measurement devices and methods to obtain various physical and/or electrical parameters in an integrated manner. For example, a measurement device may include a housing, an optical emitter, a sensor, a distance measurement circuit, a length measurement circuit, an electrical meter circuit, a display, an infrared imaging module, and/or a non-thermal imaging module. The device may be conveniently carried and utilized by users to perform a series of distance measurements, wire length measurements, electrical parameter measurements, and/or fault inspections, in an integrated manner without using multiple different devices. In one example, electricians may utilize the device to perform installation of electrical wires and/or other tasks at various locations (e.g., electrical work sites). In another example, electricians may utilize the device to view a thermal image of one or more scenes at such locations for locating potential electrical faults.
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: July 25, 2017
    Assignee: FLIR Systems, Inc.
    Inventors: Michael Fox, Mark Nussmeier, Eric A. Kurth, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp
  • Patent number: 9716844
    Abstract: Various techniques are provided for implementing an infrared imaging system, especially for low power and small form factor applications. In one example, a system includes a focal plane array (FPA). The FPA includes an array of infrared sensors adapted to image a scene. A low-dropout regulator (LDO) is integrated with the FPA and adapted to provide a regulated voltage in response to an external supply voltage. The FPA also includes a bias circuit adapted to provide a bias voltage to the infrared sensors in response to the regulated voltage. The FPA also includes a read out integrated circuit (ROIC) adapted to provide signals from the infrared sensors corresponding to captured image frames. Other implementations are also provided.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: July 25, 2017
    Assignee: FLIR Systems, Inc.
    Inventors: Mark Nussmeier, Eric A. Kurth, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp
  • Patent number: 9706138
    Abstract: Various techniques are provided for an infrared sensor assembly having a hybrid infrared sensor array. In one example, such a hybrid infrared sensor array may include a plurality of microbolometers and a non-bolometric infrared sensor. The non-bolometric infrared sensor may be a thermopile or other type of infrared sensor different from a bolometer-based sensor. The non-bolometric infrared sensor may be utilized to provide a more accurate and stable temperature reading of an object or area of a scene captured by the array. In some embodiments, the non-bolometric infrared sensor may also be utilized to perform a shutter-less radiometric calibration of the microbolometers of the array. An infrared sensor assembly may include, for example, the hybrid infrared sensor array, as well as a substrate including bond pads and/or appropriate circuits to obtain and/or transmit output signals from the non-bolometric infrared sensor.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: July 11, 2017
    Assignee: FLIR Systems, Inc.
    Inventors: Andrew C. Teich, William A. Terre, Pierre Boulanger, Jeffrey D. Frank, John H. Distelzweig
  • Patent number: 9706139
    Abstract: Various techniques are provided for implementing an infrared imaging system. In one example, a system includes a focal plane array (FPA). The FPA includes an array of infrared sensors adapted to image a scene. The FPA also includes a bias circuit adapted to provide a bias voltage to the infrared sensors. The bias voltage is selected from a range of approximately 0.2 volts to approximately 0.7 volts. The FPA also includes a read out integrated circuit (ROIC) adapted to provide signals from the infrared sensors corresponding to captured image frames. Other implementations are also provided.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: July 11, 2017
    Assignee: FLIR Systems, Inc.
    Inventors: Mark Nussmeier, Eric A. Kurth, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp
  • Patent number: 9706137
    Abstract: Various techniques are provided to monitor electrical equipment. In some implementations, a monitoring system for a cabinet may include an infrared camera configured to capture thermal images of at least a portion of electrical equipment positioned in an interior cavity of the cabinet. In some implementations, the monitoring system also includes a communication interface configured to transmit the thermal images from the infrared camera for external viewing by a user. In some implementations, the thermal images may be provided through various wired and wireless communication techniques. In some implementations, the infrared camera may receive electrical power through a physical coupling to an electrical connector within the cabinet and/or through electromagnetic energy harvesting techniques. Other implementations are also provided.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 11, 2017
    Assignee: FLIR Systems, Inc.
    Inventors: Thomas J. Scanlon, Michael Fox, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar
  • Patent number: 9699400
    Abstract: Techniques are disclosed for systems and methods to provide dynamic data management for a system having one or more cameras such as network cameras. A camera system may include one or more network cameras and a remote device. The remote device may receive camera data from one or more of the network cameras according to data management settings for the camera system. The data management settings may be determined by the system based on an available bandwidth determined based on an exchange of test data between the camera and the remote device. The data management settings can be determined during setup of one or more network cameras and/or during operation of one or more network cameras. The data management settings may include settings for video data to be transmitted over the network such as a resolution, a frame rate, a number of video channels, or other settings.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: July 4, 2017
    Assignee: FLIR SYSTEMS, INC.
    Inventor: Vlad Kardashov