Patents Assigned to Florida State University Research Foundation, Inc.
  • Patent number: 9459308
    Abstract: The present invention provides a system to ensure that distributed resources of a power distribution system remain connected to the circuitry of the power distribution system when a fault occurs at a distributed resource node to assist in identifying the location of the fault by continuing to inject current from the distributed resources into the distribution system, wherein at least one of the distributed resources comprises a controllable voltage source converter.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: October 4, 2016
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Passinam Tatcho, Mischa Steurer, Hui Li
  • Patent number: 9455365
    Abstract: A light-induced diode-like response in multi-layered MoSe2 field-effect transistors resulting from a difference in the size of the Schottky barriers between drain and source contacts, wherein each barrier can be modeled as a Schottky diode but with opposite senses of current rectification, wherein the diode response results from the light induced promotion of photo-generated carriers across the smaller barrier. The sense of current rectification can be controlled by the gate voltage which is able to modulate the relative amplitude between both barriers, yielding a photovoltaic response.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: September 27, 2016
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Luis Balicas, Nihar R. Pradhan, Efstratios Manousakis
  • Patent number: 9455645
    Abstract: The cascaded multilevel inverter is considered to be a promising topology alternative for low-cost and high-efficiency photovoltaic (PV) systems. However, the leakage current issue, resulting from the stray capacitances between the PV panels and the earth, remains a challenge in the photovoltaic cascaded multilevel inverter application. The present invention presents leakage current suppression solutions for the PV cascaded multilevel inverter by introducing properly arranged and designed passive filters. The embodiments of the invention do not include an active semiconductor device, and as such, the leakage current suppression techniques of the present invention retain the simple structure of the cascaded inverter and do not complicate the associated control system.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: September 27, 2016
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Yan Zhou, Hui Li
  • Patent number: 9446152
    Abstract: In a composition aspect of the invention, a nanoparticle coating comprises repeating polyacrylic acid monomers covalently bound together in an aliphatic chain having a plurality of carboxylic acid functional groups and modified carboxylic acid functional groups extending therefrom. A first portion of the modified carboxylic acid functional groups are modified by a PEG oligomer having a terminal methoxy functional group and a second portion of the modified carboxylic acid functional groups are modified by a PEG oligomer having at least one terminal sulfur moiety.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: September 20, 2016
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Hedi Mattoussi, Goutam Palui, Hyon Bin Na
  • Patent number: 9446153
    Abstract: In a composition aspect of the invention, a nanoparticle coating comprises repeating polyacrylic acid monomers covalently bound together in an aliphatic chain having a plurality of carboxylic acid functional groups and modified carboxylic acid functional groups extending therefrom. A first portion of the modified carboxylic acid functional groups are modified by a PEG oligomer having a terminal methoxy functional group and a second portion of the modified carboxylic acid functional groups are modified by a PEG oligomer having at least one terminal catechol group.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: September 20, 2016
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Hedi Mattoussi, Goutam Palui, Hyon Bin Na
  • Patent number: 9442153
    Abstract: The present invention provides a method to ensure that distributed resources of a power distribution system remain connected to the circuitry of the power distribution system when a fault occurs at a distributed resource node to assist in identifying the location of the fault by continuing to inject a direct current (DC) signal from the controllable voltage source converter of at least one DC voltage distributed resource into the distribution system and modulating an alternating current (AC) signal on top of the direct current (DC) signal.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: September 13, 2016
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Passinam Tatcho, Mischa Steurer, Hui Li
  • Patent number: 9438419
    Abstract: System and methodology that utilizes keyboard patterns and alpha string patterns for password cracking. Keyboard patterns can be used as components of passwords, and the relevant shapes can extracted from these keyboard patterns and passwords. This keyboard information can be used to extend a probabilistic context-free grammar that can then be used to generate guesses containing keyboard patterns. Further, patterns in alpha strings, such as repeated words and multi-words, can be systematically learned using a training dictionary. This information can be used to extend the probabilistic context-free grammars which leads to generation of guesses based on the distribution of these patterns in the alpha strings, Keyboard patterns and alpha string patterns, individually and in combination, are shown herein to be effective for password cracking.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: September 6, 2016
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Sudhir Aggarwal, Shiva Houshmand, Randy Flood
  • Patent number: 9429615
    Abstract: The present invention provides a system to ensure that distributed resources of a power distribution system remain connected to the circuitry of the power distribution system when a fault occurs at a distributed resource node to assist in identifying the location of the fault by continuing to inject current from the distributed resources into the distribution system, wherein at least one of the distributed resources is a cogeneration distributed resource.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: August 30, 2016
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Passinam Tatcho, Mischa Steurer, Hui Li
  • Patent number: 9423445
    Abstract: The present invention provides a method to ensure that distributed resources of a power distribution system remain connected to the circuitry of the power distribution system when a fault occurs at a distributed resource node to assist in identifying the location of the fault by continuing to inject current from the distributed resources into the distribution system, wherein at least one of the distributed resources is a solar panel.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: August 23, 2016
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Passinam Tatcho, Mischa Steurer, Hui Li
  • Patent number: 9417278
    Abstract: The present invention provides a system to ensure that distributed resources of a power distribution system remain connected to the circuitry of the power distribution system when a fault occurs at a distributed resource node to assist in identifying the location of the fault by continuing to inject current from the distributed resources into the distribution system, wherein at least one of the distributed resources is a solar panel.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: August 16, 2016
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Passinam Tatcho, Mischa Steurer, Hui Li
  • Patent number: 9417276
    Abstract: The present invention provides a method to ensure that distributed resources of a power distribution system remain connected to the circuitry of the power distribution system when a fault occurs at a distributed resource node to assist in identifying the location of the fault by continuing to inject current from the distributed resources into the distribution system, wherein at least one of the distributed resources is a cogeneration resource.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: August 16, 2016
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Passinam Tatcho, Mischa Steurer, Hui Li
  • Patent number: 9417277
    Abstract: The present invention provides a method to ensure that distributed resources of a power distribution system remain connected to the circuitry of the power distribution system when a fault occurs at a distributed resource node to assist in identifying the location of the fault by continuing to inject current from the distributed resources into the distribution system, wherein at least one of the distributed resources is a wind turbine.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: August 16, 2016
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Passinam Tatcho, Mischa Steurer, Hui Li
  • Patent number: 9411005
    Abstract: The present invention provides a method to ensure that distributed resources of a power distribution system remain connected to the circuitry of the power distribution system when a fault occurs at a distributed resource node to assist in identifying the location of the fault by continuing to inject current from the distributed resources into the distribution system, wherein at least one of the distributed resources is a DC voltage distributed resource comprising a controllable voltage source converter.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: August 9, 2016
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Passinam Tatcho, Mischa Steurer, Hui Li
  • Patent number: 9411006
    Abstract: The present invention provides a method to ensure that distributed resources of a power distribution system remain connected to the circuitry of the power distribution system when a fault occurs at a distributed resource node to assist in identifying the location of the fault by continuing to inject current from the distributed resources into the distribution system, wherein at least one of the distributed resources is a microturbine.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: August 9, 2016
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Passinam Tatcho, Mischa Steurer, Hui Li
  • Patent number: 9389267
    Abstract: The present invention provides a system to ensure that distributed resources of a power distribution system remain connected to the circuitry of the power distribution system when a fault occurs at a distributed resource node to assist in identifying the location of the fault by continuing to inject current from the distributed resources into the distribution system, wherein at least one of the distributed resources is a wind turbine.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: July 12, 2016
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Passinam Tatcho, Mischa Steurer, Hui Li
  • Patent number: 9389269
    Abstract: The present invention provides a system to ensure that distributed resources of a power distribution system remain connected to the circuitry of the power distribution system when a fault occurs at a distributed resource node to assist in identifying the location of the fault by continuing to inject a direct current (DC) signal from the controllable voltage source converter of at least one DC voltage distributed resource into the distribution system and modulating an alternating current (AC) signal on top of the direct current (DC) signal.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: July 12, 2016
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Passinam Tatcho, Mischa Steurer, Hui Li
  • Patent number: 9389266
    Abstract: The present invention provides a system to ensure that distributed resources of a power distribution system remain connected to the circuitry of the power distribution system when a fault occurs at a distributed resource node to assist in identifying the location of the fault by continuing to inject current from the distributed resources into the distribution system, wherein at least one of the distributed resources is a microturbine.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: July 12, 2016
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Passinam Tatcho, Mischa Steurer, Hui Li
  • Patent number: 9389268
    Abstract: The present invention provides a system to ensure that distributed resources of a power distribution system remain connected to the circuitry of the power distribution system when a fault occurs at a distributed resource node to assist in identifying the location of the fault by continuing to inject current from the distributed resources into the distribution system, wherein at least one of the distributed resources is a DC voltage distributed resource comprising a controllable voltage source converter.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: July 12, 2016
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Passinam Tatcho, Mischa Steurer, Hui Li
  • Patent number: 9389270
    Abstract: The present invention provides a method to ensure that distributed resources of a power distribution system remain connected to the circuitry of the power distribution system when a fault occurs at a distributed resource node to assist in identifying the location of the fault by continuing to inject current from the distributed resources into the distribution system, wherein at least one of the distributed resource comprises a controllable voltage source converter.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: July 12, 2016
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Passinam Tatcho, Mischa Steurer, Hui Li
  • Patent number: 9365428
    Abstract: Methods are provided for fabricating graphene nanoribbons. The methods rely on laser irradiation that is applied to a carbon nanotube film to unzip one or more carbon nanotubes of the carbon nanotube film. Graphene nanoribbons can be cross-linked via laser irradiation to form a graphene nanoribbon network.
    Type: Grant
    Filed: July 12, 2014
    Date of Patent: June 14, 2016
    Assignee: FLORIDA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventors: Mei Zhang, Okenwa O. I. Okoli, Hai Hoang Van