Patents Assigned to Fuel Tech Inc.
  • Publication number: 20130287669
    Abstract: Disclosed are methods and apparatus for providing an ammonia feed for a low-temperature process. The process includes two defined stages, gasification and hydrolysis. In a first stage thermal reactor, an aqueous urea solution is fed to a gasification chamber and heated gases are controlled in response to demand from a low temperature process requiring ammonia. The heated gases and aqueous urea are introduced into the gasification chamber upstream to fully gasify the solution of aqueous urea to a first stage gas stream comprising ammonia and isocyanic acid. The first stage gas stream is withdrawn and maintained hot enough to prevent solids formation. All amounts of urea feed, water and heated gases fed into the first stage thermal reactor are monitored and adjusted as necessary to achieve efficient hydrolysis in the second stage hydrolysis reactor. The second stage gas stream is withdrawn from the second stage reactor responsive to demand from a low temperature process requiring ammonia.
    Type: Application
    Filed: April 25, 2012
    Publication date: October 31, 2013
    Applicant: FUEL TECH, INC.
    Inventors: William H. Sun, John M. Boyle, Paul G. Carmignani, Scott M. Mayhew
  • Patent number: 8470277
    Abstract: A process and an apparatus enhance urea utilization for selective catalytic reduction (SCR) of NOx, by controlled preparation and feed of gasified urea during combustor load variation. The concentration of NOx in the combustion gases and a required total gas flow necessary to supply an SCR reactor with NOx reducing and carrier gases are determined. Urea is gasified by gasification gases in a thermal gasification reactor. The resulting urea gasification products are mixed with carrier gases to provide an injection grid supply stream. Heating is reduced and flue gas enthalpy is efficiently used by controls utilizing monitoring the temperatures of gases fed to the thermal gasification reactor and of the stream of carrier gases.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: June 25, 2013
    Assignee: Fuel Tech, Inc.
    Inventors: William H. Sun, Paul G. Carmignani
  • Publication number: 20130039827
    Abstract: A process and an apparatus enhance urea utilization for selective catalytic reduction (SCR) of NOx, by controlled preparation and feed of gasified urea during combustor load variation. The concentration of NOx in the combustion gases and a required total gas flow necessary to supply an SCR reactor with NOx reducing and carrier gases are determined. Urea is gasified by gasification gases in a thermal gasification reactor. The resulting urea gasification products are mixed with carrier gases to provide an injection grid supply stream. Heating is reduced and flue gas enthalpy is efficiently used by controls utilizing monitoring the temperatures of gases fed to the thermal gasification reactor and of the stream of carrier gases.
    Type: Application
    Filed: August 7, 2012
    Publication date: February 14, 2013
    Applicant: FUEL TECH, INC.
    Inventors: William H. Sun, Paul G. Carmignani
  • Publication number: 20120288952
    Abstract: Disclosed are methods and apparatus for treating and analyzing a gas stream to determine the effectiveness of urea gasification. The apparatus will be capable of performing the method and will include: means for introducing an aqueous solution of urea into a reactor having hot gases therein and subjecting the aqueous to temperatures for a time to assure the gasification of the aqueous urea and form a thermal gasification product stream containing NH3 and HNCO; means for taking a sample stream from the gasification product stream; means for contacting the sample stream with a hydrolysis catalyst in the presence of sufficient water to convert HNCO to NH3 and form an ammonia sample stream; and means for analyzing the ammonia sample stream for NH3. The methods and apparatus can also be used to control a urea gasification process and/or to signal anomalous operation.
    Type: Application
    Filed: May 3, 2012
    Publication date: November 15, 2012
    Applicant: FUEL TECH, INC.
    Inventors: William H. Sun, John M. Boyle
  • Patent number: 8141588
    Abstract: An apparatus and method for redirecting fluid flow in a plenum provides flow performance (quality), structural, and economic advantages by using an array of flat blades that is mounted at an angle with respect to the inlet (upstream) fluid flow, such that the blades are tilted with respect to that flow and correspondingly redirect the flow in a desired direction. The apparatus, also referred to as a “GSG” or “graduated straightening grid,” has a range of applications, and offers a number of performance, structural, and economic advantages in large-scale applications. As a particular, but non-limiting example, one or more embodiments of the flow-redirecting apparatus taught herein are configured for use in Selective Catalytic Reduction (SCR) systems where catalytic reactors are used for scrubbing industrial flue gases.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: March 27, 2012
    Assignee: Fuel Tech, Inc.
    Inventors: Jason Tan, Stewart Andrew Bible, Caleb Douglas Triece
  • Publication number: 20110203498
    Abstract: A process that uses targeted in-furnace Injection to feed a fluxing agent of the chemical family of compositions containing boron and/or alkali hydrates to either decrease heat transfer on waterwalls of utility furnaces burning solid fuels to improve steam generation, maintain steam temperature, and/or allow a protective layer of slag to form inside the barrels of cyclones on cyclone boilers burning fuels high in calcium so that the boiler can operate at a wider variety of power settings while allowing proper flow and drainage of slag from the cyclone barrels.
    Type: Application
    Filed: February 23, 2011
    Publication date: August 25, 2011
    Applicant: Fuel Tech Inc.
    Inventors: Christopher R. Smyrniotis, Kent W. Schulz
  • Publication number: 20110002830
    Abstract: A preferred apparatus arrangement utilizes the enthalpy of the flue gas, which can be supplemented if need be, to convert urea (30) into ammonia for SCR. Urea (30), which decomposes at temperatures above 140 .degree. C., is injected (32) into a flue gas stream split off (28) after a heat exchanger (22), such as a primary superheater or an economizer. Ideally, the side stream would gasify the urea without need for further heating; but, when heat is required it is far less than would be needed to heat either the entire effluent (23) or the urea (30). This side stream, typically less than 3% of the flue gas, provides the required temperature and residence time for complete decomposition of urea (30). A cyclonic separator can be used to remove particulates and completely mix the reagent and flue gas. This stream can then be directed to an injection grid (37) ahead of SCR using a blower (36).
    Type: Application
    Filed: July 2, 2010
    Publication date: January 6, 2011
    Applicant: FUEL TECH, INC.
    Inventors: William H. Sun, William E. Cummings, Piers de Havilland, Paul G. Carmignani, John M. Boyle
  • Patent number: 7845292
    Abstract: A slag and corrosion control process is described. The process entails: identifying the location of at least one slagging problem area in a boiler; introducing a slag control chemical comprising magnesium oxide or hydroxide into combustion gases in a location identified as having a slagging problem; identifying the location of at least one corrosion problem area in a boiler; and introducing a corrosion control chemical comprising a sulfate salt, bisulfite salt, sulfuric acid, or sulfur into combustion gases in a location identified as having a corrosion problem. In operation, these slag deposits will be sufficiently friable to be removed by relatively moderate application of physical energy, thus saving time and reducing any damage to the tubes by the cleaning process. The slag deposits are less voluminous and less in weight and are removed quickly. It is an advantage of the invention that slag can be removed with little or no shut down of a boiler.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: December 7, 2010
    Assignee: Fuel Tech, Inc.
    Inventors: J. David Martin, Christopher R. Smyrniotis, Kent W. Schulz, William H. Sun, Scott K. Bohlen, Glenn Brewer
  • Patent number: 7829033
    Abstract: A preferred apparatus arrangement utilizes the enthalpy of the flue gas, which can be supplemented if need be, to convert urea (30) into ammonia for SCR. Urea (30), which decomposes at temperatures above 140 .degree. C., is injected (32) into a flue gas stream split off (28) after a heat exchanger (22), such as a primary superheater or an economizer. Ideally, the side stream would gasify the urea without need for further heating; but, when heat is required it is far less than would be needed to heat either the entire effluent (23) or the urea (30). This side stream, typically less than 3% of the flue gas, provides the required temperature and residence time for complete decomposition of urea (30). A cyclonic separator can be used to remove particulates and completely mix the reagent and flue gas. This stream can then be directed to an injection grid (37) ahead of SCR using a blower (36).
    Type: Grant
    Filed: February 8, 2006
    Date of Patent: November 9, 2010
    Assignee: Fuel Tech, Inc.
    Inventors: William H. Sun, William E. Cummings, Jr., Piers de Havilland, Paul G. Carmignani, John M. Boyle
  • Patent number: 7815881
    Abstract: Disclosed are a process and apparatus for selective catalytic reduction of NOx. The process is enabled by bypassing a heat exchanger section, such as an economizer, of the boiler in advance of an SCR unit at low load conditions to enable NOx reduction even at low loads using urea instead of ammonia. In a preferred form, under high load conditions, the bypass can be almost fully closed and the economizer can be operated normally without excessively cooling the combustion gases, using only a portion of bypassed gases which are hot enough to decompose the urea into its active components including ammonia.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: October 19, 2010
    Assignee: Fuel Tech, Inc.
    Inventors: M. Linda Lin, William H. Sun, John M. Boyle, Penelope Stamatakis
  • Publication number: 20100061907
    Abstract: Disclosed is a system which enables the efficient utilization of urea for selective catalytic reduction (SCR) of NOx by gasifying it and feeding it to a plurality of selective catalytic reduction units associated with a plurality of gas turbines. The invention enables feeding a gasified product of the urea with the ability to fully control separate SCR units without excessive reagent usage or loss of pollution control effectiveness. Controllers determine the amount of reagent required for each turbine to control NOx emissions and then mixes the gasified urea with the correct amount of carrier gas for efficient operation of each separate SCR unit despite the demand variation between the turbines. In this manner the gasification unit can be properly controlled to provide urea on demand without the need for storing large inventories of ammonia-containing gasses to correct for fluctuations in demand.
    Type: Application
    Filed: November 6, 2008
    Publication date: March 11, 2010
    Applicant: FUEL TECH INC.
    Inventors: William H. Sun, Paul G. Carmignani, John M. Boyle
  • Publication number: 20100055014
    Abstract: Disclosed are a process and apparatus for selective catalytic reduction of NOx. The process is enabled by bypassing a heat exchanger section, such as an economizer, of the boiler in advance of an SCR unit at low load conditions to enable NOx reduction even at low loads using urea instead of ammonia. In a preferred form, under high load conditions, the bypass can be almost fully closed and the economizer can be operated normally without excessively cooling the combustion gases, using only a portion of bypassed gases which are hot enough to decompose the urea into its active components including ammonia.
    Type: Application
    Filed: November 10, 2009
    Publication date: March 4, 2010
    Applicant: FUEL TECH, INC.
    Inventors: M. Linda Lin, William H. Sun, John M. Boyle, Penelope Stamatakis
  • Publication number: 20100006014
    Abstract: Disclosed is a process that increases the output of a combustor fired with coal having high iron and/or calcium content, by reducing the tendency of slag to form on heat exchange surfaces and changing the nature of the slag to make it easier to remove. The process includes combusting a slag-forming coal, having high iron and/or calcium content, with an overall excess of oxygen; moving the resulting combustion gases though heat exchange equipment under conditions which cause cooling of slag formed by burning the fuel; and prior to contact with said heat exchange equipment, introducing aqueous aluminum trihydroxide in amounts and with droplet sizes and concentrations effective to decrease the rate of fouling, and preferably, increase the friability of the resulting slag.
    Type: Application
    Filed: July 13, 2009
    Publication date: January 14, 2010
    Applicant: FUEL TECH, INC.
    Inventors: Christopher R. Smyrniotis, Kent W. Schulz, Emelito P. Rivera
  • Publication number: 20090297417
    Abstract: Disclosed are methods and apparatus enabling the efficient utilization of urea for purposes such as selective catalytic reduction (SCR) of NOx, which enable feeding urea to a chamber designed to efficiently and completely gasify the urea to enable ammonia feed. Preferably, aqueous urea is fed to a gasification chamber, which is also fed with heated gases. An injector means, capable of distributing the aqueous urea as fine droplets, is positioned centrally of a gas distribution plate in the chamber. An arrangement of spaced holes in the gas distribution plate provides higher gas velocity in the vicinity of the injector means than near the walls of the chamber. Uniform gas distribution without equipment fouling is achieved.
    Type: Application
    Filed: May 27, 2009
    Publication date: December 3, 2009
    Applicant: FUEL TECH, INC.
    Inventors: William H. Sun, John M. Boyle, Ronald A. Lau
  • Patent number: 7615200
    Abstract: Disclosed are a process and apparatus for selective catalytic reduction of NOx. The process is enabled by passing a heat exchanger section, such as an economizer, of the boiler in advance of an SCR unit at low load conditions to enable NOx reduction even at low loads using urea instead of ammonia. In a preferred form, under high load conditions, the bypass can be almost fully closed and the economizer can be operated normally without excessively cooling the combustion gases, using only a portion of bypassed gases which are hot enough to decompose the urea into its active components including ammonia.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: November 10, 2009
    Assignee: Fuel Tech, Inc.
    Inventors: M. Linda Lin, William H. Sun, John M. Boyle, Penelope Stamatakis
  • Patent number: 7332143
    Abstract: NOx and SO3 emissions from combustion of a sulfur containing carbonaceous fuel are reduced simultaneously. The combustion gases comprising NOx and SO2 are mixed with a NOx control agent into the combustion gases at a point upstream of a selective catalytic reduction catalyst for reduction of NOx. Following an SCR catalyst or other equipment that can oxidize SO2 to SO3 and prior to contact with an air heater for heating incoming combustion air, magnesium hydroxide is introduced in amounts and with droplet sizes and concentrations effective to form nano-sized particles in the effluent and reduce SO3 caused by the oxidation of SO2 in the catalyst. Computational fluid dynamics is employed to determine flow rates and select reagent introduction rates, reagent introduction location(s), reagent concentration, reagent droplet size and/or reagent momentum.
    Type: Grant
    Filed: February 6, 2006
    Date of Patent: February 19, 2008
    Assignee: Fuel Tech, Inc.
    Inventors: Christopher R. Symrniotis, William H. Sun
  • Publication number: 20070231232
    Abstract: Disclosed are a process and apparatus for selective catalytic reduction of NOx. The process is enabled by passing a heat exchanger section, such as an economizer, of the boiler in advance of an SCR unit at low load conditions to enable NOx reduction even at low loads using urea instead of ammonia. In a preferred form, under high load conditions, the bypass can be almost fully closed and the economizer can be operated normally without excessively cooling the combustion gases, using only a portion of bypassed gases which are hot enough to decompose the urea into its active components including ammonia.
    Type: Application
    Filed: April 3, 2007
    Publication date: October 4, 2007
    Applicant: FUEL TECH, INC.
    Inventors: M. Lin, William Sun, John Boyle, Penelope Stamatakis
  • Publication number: 20070119352
    Abstract: A slag and corrosion control process is described. The process entails: identifying the location of at least one slagging problem area in a boiler; introducing a slag control chemical comprising magnesium oxide or hydroxide into combustion gases in a location identified as having a slagging problem; identifying the location of at least one corrosion problem area in a boiler; and introducing a corrosion control chemical comprising a sulfate salt, bisulfite salt, sulfuric acid, or sulfur into combustion gases in a location identified as having a corrosion problem. In operation, these slag deposits will be sufficiently friable to be removed by relatively moderate application of physical energy, thus saving time and reducing any damage to the tubes by the cleaning process. The slag deposits are less voluminous and less in weight and are removed quickly. It is an advantage of the invention that slag can be removed with little or no shut down of a boiler.
    Type: Application
    Filed: October 12, 2006
    Publication date: May 31, 2007
    Applicant: Fuel Tech, Inc.
    Inventors: J. Martin, Christopher Smyrniotis, Kent Shultz, William Sun, Scott Bohlen, Glenn Brewer
  • Publication number: 20070044693
    Abstract: The heat output, e.g., megawatt product or steam generation, of a combustor is increased, preferably while plume is mitigated, by targeting treatment chemicals to locations in a furnace. The process improves heat output from the fuel in the region of the combustor optimum for heat recovery and also maintains good heat transfer characteristics for the heat exchange surfaces. The effectiveness of targeted in furnace injection, in-fuel introduction and in-furnace introduction of slag and/or corrosion and/or plume control chemicals are preferably determined, as are the effectiveness of targeted in furnace injection, in fuel introduction and in furnace introduction of combustion catalysts. Then, the effectiveness of various combinations of the above treatments are determined, and a treatment regimen employing one or more of the above treatments is selected. Preferred treatment regimens will contain at least two and preferably three of the treatments.
    Type: Application
    Filed: June 30, 2006
    Publication date: March 1, 2007
    Applicant: Fuel Tech, Inc.
    Inventors: Christopher Smyrniotis, Emilito Rivera, Frank Zuccarini, William Sun
  • Patent number: 7162960
    Abstract: Plume is mitigated by targeting treatment chemicals to locations in a furnace, which are connected with plume opacity. The effectiveness of targeted in furnace injection, in fuel introduction and in furnace introduction of slag and/or corrosion and/or plume control chemicals are determined, as are the effectiveness of targeted in furnace injection, in fuel introduction and in furnace introduction of combustion catalysts. Then, the effectiveness of various combinations of the above treatments are determined, and a treatment regimen employing one or more of the above treatments is selected. Preferred treatment regimens will contain at least two and preferably three of the treatments. Chemical utilization and boiler maintenance can improved as LOI carbon, slagging and/or corrosion are also controlled.
    Type: Grant
    Filed: January 8, 2004
    Date of Patent: January 16, 2007
    Assignee: Fuel Tech, Inc.
    Inventors: Christopher R. Smyrniotis, Emellto P. Rivera, Frank J. Zuccarini