Abstract: An apparatus comprising a processor configured to determine whether to use an intra smoothing filter for a rectangular prediction unit (PU) based on a lookup table (LUT) used for square PUs, wherein a width of the rectangular PU is not equal to a height of the rectangular PU.
Abstract: A method for operating a communications controller includes selecting a search space configuration out of a set of candidate search space configurations for a user equipment served by the communications controller, wherein the search space configuration specifies one or more search spaces to be monitored out of a set of search spaces, and signaling the selected search space configuration to the user equipment.
Type:
Grant
Filed:
January 30, 2013
Date of Patent:
March 21, 2017
Assignee:
Futurewei Technologies, Inc.
Inventors:
Philippe Sartori, Jianghua Liu, Qiang Wu, Vipul Desai, Weimin Xiao, Brian Classon
Abstract: System and method embodiments are provided for content encryption in a key/value store. The embodiments include encrypting both the key and value of client data blocks for storage so that the data can be retrieved reliability without compromising the key. An embodiment method includes obtaining a key from a data block comprising the key and a value, encrypting the key using a deterministic encryption algorithm with an encryption key to map the key to a cypher text in a one-to-one mapping, and encrypting the value using a second encryption algorithm to randomly map the value to a second cypher text. Encrypting both the key and the value provides more protection to the client data instead of encrypting only the value and leaving the key vulnerable without encryption. The encrypted key can also be protected from unauthorized access and from the owner of the database or the storage system.
Abstract: A method for region guided and change tolerant fast shortest path determination and graph preprocessing for network management and control. In an embodiment, a method includes partitioning, by a network component, a plurality of network nodes into a plurality of regions, each network node belonging to one of the regions; identifying, by the network component, border nodes for each region, each border node in a region connecting to at least one border node in a connecting region; determining, by the network component, intervals between regions according to the border nodes, each interval comprising a minimum distance and a maximum distance between two regions; determining, by the network component, a path from a source node to a target node according to the intervals.
Abstract: An interconnection system comprising a plurality of nodes, each comprising at least two ports, and a plurality of links configured to interconnect ports among the nodes to form a hierarchical multi-level ring topology, wherein the ring topology comprises a plurality of levels of rings including a base ring and at least two hierarchical shortcut rings, and wherein each node connected to a higher-level shortcut ring is also connected to all lower-level rings including the base ring.
Abstract: Various disclosed embodiments include methods, systems, and computer-readable media for named data network (NDN) inter/intra-domain mobility. A complete de-coupling of identity and addressing space is established. This provides separation of control and forwarding allowing rich policy based routing, using SDN principles, as well as policy based global resolution. In one embodiment, the de-coupling of identity from location is achieved by a changeable forwarding label field in a header that can have nodal/domain/global scope. This disclosure provides content routing/mobility to be handled with a high degree of flexibility. This disclosure also provides mobility as a service for a component of a name space.
Type:
Application
Filed:
November 23, 2016
Publication date:
March 16, 2017
Applicant:
Futurewei Technologies, Inc.
Inventors:
Ravishankar Ravindran, Guo-Qiang Wang, Xinwen Zhang, Asit Chakraborti
Abstract: Embodiments are provided for calibration, preprocessing, and segmentation for user localization and network traffic density estimation. The embodiments include sending, from a network component, a request to a plurality of user equipment (UEs) to participate in reporting localization data. Reports for localization data including no-lock reports are received from at least some of the UEs. The no-lock reports indicate indoor UEs among the UEs. The network preprocesses the localization data by eliminating, from the localization data, data that increases the total noise to signal ratio. The localization data is then processed using a model that distinguishes between different buildings. This includes associating, according to a radio map, radio characteristics in the localization data with corresponding bins in a non-uniform grid of coverage. The non-uniform grid is predetermined to maximize uniqueness between the radio characteristics.
Type:
Grant
Filed:
November 14, 2013
Date of Patent:
March 14, 2017
Assignee:
FUTUREWEI TECHNOLOGIES, INC.
Inventors:
Mark Newbury, Iyad Alfalujah, Suman Das, Kamalaharan Dushyanthan
Abstract: An apparatus comprises an isolated power converter coupled to an input dc power source, wherein the isolated power converter comprises a primary switching network operating at a fixed switching frequency, a secondary resonant tank including a dc blocking capacitor and a rectifier having two input terminals coupled to the secondary resonant tank, an output capacitor coupled between a first output terminal of the rectifier and a load and a dc/dc converter coupled between a second output terminal of the rectifier and the load.
Type:
Grant
Filed:
September 29, 2014
Date of Patent:
March 14, 2017
Assignee:
Futurewei Technologies, Inc.
Inventors:
Heping Dai, Dianbo Fu, Liming Ye, Daoshen Chen
Abstract: A power system comprising a non-isolated voltage regulator configured to couple to an input voltage and produce an output voltage, wherein the non-isolated voltage regulator is in a power distribution system and configured to boost the input voltage when the input voltage is less than a minimum output voltage, to reduce the input voltage when the input voltage is greater than a maximum output voltage, and to pass-through the input voltage when the input voltage is greater than or equal to the minimum output voltage and less than or equal to the maximum output voltage.
Abstract: A system comprises a first T-type inverter and a second T-type inverter connected to a dc power source and a first winding of a transformer, wherein the second T-type inverter is configured to operate with a first phase shift from the first T-type inverter, a third T-type inverter and a fourth T-type inverter connected to the dc power source and a second winding of the transformer, wherein the fourth T-type inverter is configured to operate with a second phase shift from the third T-type inverter and a fifth T-type inverter and a sixth T-type inverter connected to the dc power source and a third winding of the transformer, wherein the sixth T-type inverter is configured to operate with a third phase shift from the fifth T-type inverter.
Abstract: A system, apparatus and method is described for dynamically boosting (increasing) the power supply voltage to an envelope tracking (ET) modulator within a transmitter system when the target/desired power amplifier voltage supply is above a predetermined threshold (e.g., equal to the available power supply of the system, such as a battery). By boosting the power input supply to the ET modulator, the modulated power supply provided to the power amplifier (PA) is also increased. This reduces or eliminates clipping that normally occurs when the target/desired PA supply voltage is greater than the available power supply voltage and reduces distortion in the transmitted signal.
Type:
Grant
Filed:
April 2, 2015
Date of Patent:
March 14, 2017
Assignee:
Futurewei Technologies, Inc.
Inventors:
Hong Jiang, Wael Al-Qaq, Robert Grant Irvine, Matthew M. Kostelnik, Zhihang Zhang
Abstract: An apparatus comprising a digital signal processor (DSP) unit configured to perform fiber dispersion pre-compensation on a digital signal sequence based on a dispersion value to produce a pre-compensated signal, wherein the dispersion value is associated with a remote optical receiver, a plurality of digital-to-analog converters (DACs) coupled to the DSP unit and configured to convert the pre-compensated signal into analog electrical signals, and a frontend coupled to the DACs and configured to convert the analog electrical signals into a first optical signal, adding a constant optical electric (E)-field to the first optical signal to produce a second optical signal, and transmit the second optical signal to the remote optical receiver.
Abstract: A user equipment (UE) comprising a display, a visual input configured to capture motion or stop photography as visual data, a memory comprising instructions, and a processor coupled to the display, the input device, and the memory and configured to execute the instructions by receiving visual data from the visual input, determining a position of the feature relative to the UE if the visual data comprises a feature of a first area of a location, and generating a model of the first area of the location based on the position of the feature. The disclosure also includes a method comprising receiving data indicating a position of a feature of a location relative to a UE, and generating a model of the location based on the position of the feature.
Abstract: An embodiment holdup time circuit of a bridgeless power factor correction circuit comprises a charge device, an energy storage apparatus and a discharge device. The charge device comprises a first terminal coupled to a bridgeless power factor correction circuit and a second terminal coupled to the energy storage apparatus. The discharge device comprises a first terminal coupled to the energy storage apparatus and a second terminal coupled to the bridgeless power factor correction circuit.
Abstract: A method embodiment includes receiving, by an access point (AP), a request for an access network query protocol (ANQP) element, and multicasting the ANQP element as an ANQP information element (IE), wherein the ANQP IE is configured in accordance with a format transmittable by the AP in a multicast.
Abstract: Encoded control information can be mapped to an enhanced physical downlink control channel (ePDCCH) search space of a user equipment (UE) in accordance with an offset and aggregation level. The ePDCCH search space may include a physical resource block (PRB) set located in a data region of a downlink subframe. The encoded control information may be mapped into one or more enhanced control channel elements (eCCEs) of the ePDCCH search space beginning from a starting location. The starting location is an eCCE location within the PRB set. The PRB set, as well as the starting/eCCE location within the PRB set, are identified in accordance with an offset associated with the UE. A number of eCCEs carrying encoded information corresponds to an aggregation level.
Type:
Grant
Filed:
May 8, 2015
Date of Patent:
March 7, 2017
Assignee:
Futurewei Technologies, Inc.
Inventors:
Philippe Sartori, Vipul Desai, Brian Classon
Abstract: Embodiments are provided to support device-to-device (D2D) communications in a time-division duplexing (TDD) communications system, and ensure that D2D discovery signals are transmitted by user devices on an uplink subframe when there is a TDD frame configuration change. In an embodiment, a user device receives form the network a TDD frame configuration selected from a set of available TDD frame configurations according to the TDD configuration. The device further receives a D2D discovery configuration for a discovery time interval. The user device then allocates a transmission resource a D2D discovery signal within the discovery time interval according to the D2D discovery configuration. The user device is also configured to receive from another device a second D2D discovery signal during the discovery time interval in accordance with the TDD configuration and the D2D discovery configuration.
Type:
Grant
Filed:
June 7, 2016
Date of Patent:
March 7, 2017
Assignee:
Futurewei Technologies, Inc.
Inventors:
Philippe Sartori, Vipul Desai, Mazin Ali Al-Shalash, Weimin Xiao, Anthony C. K. Soong
Abstract: A method for error detection within a passive optical network (PON), the method comprising receiving a first upstream optical signal that is copied at an optical splitter, converting the first upstream optical signal to a first electrical signal, receiving a second electrical signal that is converted from a second upstream optical signal that is copied at the optical splitter, and determining a corrected transmitted data stream using at least the first electrical signal and the second electrical signal, wherein the first upstream optical signal and the second upstream optical signal are copies of an upstream optical signal generated from a plurality of optical network units (ONUs).
Abstract: A method for operating a cooperating user equipment (CUE) includes receiving a plurality of video packets that are hierarchically modulated (HM), with each video packet corresponding to a separately encoded video layer that is encoded with a rateless code, and decoding the plurality of video packets. The method also includes generating one or more supplemental packets to assist in the decoding of the plurality of video packets, and transmitting the one or more supplemental packets.
Abstract: Network traffic is sent via alternate paths in cases of network link or node failure. An alternate node responds to U-Turn traffic from a primary neighbor to select a further alternate. An algorithm for determining the alternate paths is provided to select loop-free neighbors.