Patents Assigned to GELcore LLC
-
Patent number: 7391337Abstract: A bi-directional communication system communicates between a control station, which receives and outputs control signals, and one or more display cabinets. LEDs illuminate objects disposed about the cabinets. Addressable nodes interactively communicate with the control station and selectively operate the LEDs, each node being coupled to the control station and to associated LEDs.Type: GrantFiled: September 23, 2005Date of Patent: June 24, 2008Assignee: GELcore LLCInventor: Nicolas St-Germain
-
Publication number: 20080137377Abstract: The present invention relates to a light emitting diode (LED) light engine. The LED light engine includes at least one LED, the at least one LED having at least one first electrical terminal and at least one second electrical terminal. The LED light engine further includes an electrical cable having a first conductor and a second conductor, the at least one LED being secured to the first conductor by a first insulation displacement connector (IDC) and to the second conductor by a second IDC. The first IDC includes at least one socket for receiving the at least one first electrical terminal and a piercing portion for displacing the insulating portion and electrically contacting the first conductor of the electrical cable. The second IDC includes at least one socket for receiving the second terminal of the at least one LED and a piercing portion for displacing the insulating portion and contacting the second conductor of the electrical cable.Type: ApplicationFiled: December 11, 2006Publication date: June 12, 2008Applicant: GELcore, LLCInventors: Ronald K. Brengartner, Koushik Saha
-
Publication number: 20080085625Abstract: A connector electrically connects corresponding conductors of at least first and second cables. The connector comprises a connecting portion into which the conductors of the first and second cables are inserted opposing one another to electrically connect corresponding conductors of each cable. A positive terminal and a negative terminal terminate and electrically connect corresponding conductors of each cable.Type: ApplicationFiled: October 5, 2006Publication date: April 10, 2008Applicant: GELcore, LLCInventors: Koushik Saha, Ronald K. Brengartner, Paul W. Southard, Michael F. Augustine, Yu Pan, Matthew S. Mrakovich
-
Publication number: 20080062644Abstract: An electronic device having enhanced heat dissipation capabilities includes an electronic device, a heat sink, a channel, a piezoelectric element, and a blade. The heat sink is in thermal communication with the electronic device. The channel includes an inlet, an outlet and a constriction disposed along the channel between the inlet and the outlet. The heat sink defines at least a portion of the channel. The blade includes a free end and an attached end. The blade is disposed in the channel and connected to the piezoelectric element. The piezoelectric element is activated to move the blade side to side in the channel to create air vortices. The constriction in the channel and the blade cooperate with one another such that a vortex that is generated as the blade moves toward a first side of the channel is compressed against the first side of the channel and expelled towards the outlet of the channel.Type: ApplicationFiled: September 12, 2006Publication date: March 13, 2008Applicant: GELcore, LLCInventor: James T. Petroski
-
Publication number: 20080055913Abstract: A booster optic is provided in an LED light assembly that includes a primary reflective surface to redirect light towards a desired location to form an illuminance pattern that when combined with a first illuminance pattern, which is formed by only the primary reflector, provides a combined illuminance pattern having a more uniform illuminance characteristic as compared to not having the booster optic.Type: ApplicationFiled: August 30, 2006Publication date: March 6, 2008Applicant: GELCORE, LLCInventors: William Sekela, Alan Toot, Mark Mayer, Mathew Sommers
-
Patent number: 7268674Abstract: The inventive dummy load is mounted on the input power cables of a traffic signal while managing the heat load generated by either a resistive and/or capacitive load. Using the inventive dummy load, there is no thermal path back to the light emitting diode (LED) board. The inventive dummy load may be easly installed, removed, or replaced. The dummy load can be retrofit to adapt to a new controller, either by adding to or replacing the dummy load after initial installation or by removing part or all of the dummy load. There is no need to breach the sealed lamp to adjust the dummy load. Thus, field-adjustments can be made. Further, the number of parts required to manufacture lamps for a variety of retrofit applications are reduced, which in turn reduces the cost and complexity of the lamp.Type: GrantFiled: January 26, 2005Date of Patent: September 11, 2007Assignee: GELcore LLCInventors: Christopher L. Bohler, Louis Brunet
-
Publication number: 20070190845Abstract: A string light engine includes a flexible power cord, a heat sink, an IDC terminal, a PCB, and an LED. The flexible power cord includes an electrical wire and an insulating material for the wire. The heat sink attaches to the power cord. The IDC terminal is inserted through the insulating material and electrically communicates with the wire. The PCB is at least partially received in the heat sink. The PCB includes a first surface having circuitry and a second surface opposite the first surface. The circuitry is in electrical communication with the IDC terminal. The second surface is abutted against a surface of the heat sink so that heat is transferred from the LED into the heat sink. The LED mounts to the first surface of the PCB and is in electrical communication with the circuitry.Type: ApplicationFiled: March 26, 2007Publication date: August 16, 2007Applicant: GELCORE LLCInventors: Matthew Mrakovich, Jeffrey Nall
-
Patent number: 7233258Abstract: A system is employed to provide a substantially constant intensity light source via functional circuitry, the functional circuitry comprises a switching power supply. At least one signal is part of a matrix of LEDs connected in series and parallel and configured for redundancy. A monitoring circuit comprises a current sense circuit, wherein the current sense circuit includes an amplifier and at least one resistor in series with the amplifier. The current sense circuit includes a power converter circuit that senses a current of a flyback diode, recovers a dc component of a waveform via a low pass filter, and provides feedback control of the at least one signal.Type: GrantFiled: April 13, 2004Date of Patent: June 19, 2007Assignee: GELcore LLCInventor: Reynaid Gelinas
-
Publication number: 20070087619Abstract: A string light engine includes a plurality of LEDs, a plurality of IDC connectors, and an insulated flexible conductor. Each IDC connector is in electrical communication with at least one of the plurality of LEDs and is operatively mechanically connected to at least one of the plurality of LEDs. The IDC connectors attach to the conductor.Type: ApplicationFiled: October 5, 2006Publication date: April 19, 2007Applicant: GELCORE, LLCInventors: Jeffrey Nall, Paul Southard, Matthew Mrakovich, Mark Scarlato, Ronald Brengartner, Koushik Saha, Yu Pan
-
Patent number: 7190005Abstract: A light-emitting element (24) is disclosed. A light emitting diode (LED) includes a sapphire substrate (26) having front and back sides (33, 35), and a plurality of semiconductor layers (28, 30, 32) deposited on the front side (33) of the sapphire substrate (26). The semiconductor layers (28, 30, 32) define a light-emitting structure that emits light responsive to an electrical input. A metallization stack (40) includes an adhesion layer (34) deposited on the back side (35) of the sapphire substrate (26), and a solderable layer (38) connected to the adhesion layer (34) such that the solderable layer (38) is secured to the sapphire substrate (26) by the adhesion layer (34). A support structure (42) is provided on which the LED is disposed. A solder bond (44) is arranged between the LED and the support structure (42). The solder bond (44) secures the LED to the support structure (42).Type: GrantFiled: June 22, 2004Date of Patent: March 13, 2007Assignee: GELcore, LLCInventors: Shawn R. Gibb, Robert F. Karlicek, Prosanto K. Mukerji, Hari S. Venugopalan, Ivan Eliashevich
-
Patent number: 7179670Abstract: A light emitting diode (10) has a backside and a front-side with at least one n-type electrode (14) and at least one p-type electrode (12) disposed thereon defining a minimum electrodes separation (delectrodes). A bonding pad layer (50) includes at least one n-type bonding pad (64) and at least one p-type bonding pad (62) defining a minimum bonding pads separation (dpads) that is larger than the minimum electrodes separation (delectrodes). At least one fanning layer (30) interposed between the front-side of the light emitting diode (10) and the bonding pad layer (50) includes a plurality of electrically conductive paths passing through vias (34, 54) of a dielectric layer (32, 52) to provide electrical communication between the at least one n-type electrode (14) and the at least one n-type bonding pad (64) and between the at least one p-type electrode (12) and the at least one p-type bonding pad (62).Type: GrantFiled: March 5, 2004Date of Patent: February 20, 2007Assignee: GELcore, LLCInventors: Bryan S. Shelton, Sebastien Libon, Hari S. Venugopalan, Ivan Eliashevich, Stanton E. Weaver, Jr., Chen-Lun Hsing Chen, Thomas F. Soules, Steven LeBoeuf, Stephen Arthur
-
Patent number: 7175305Abstract: A LED symbol signal with LEDs arrayed to correspond to a desired symbol. A mask defines the desired symbol. A diffusion surface on the cover diffuses the display aspect, obscuring the individual LEDs. The mask is spaced a distance from the diffusing surface. The more aggressive the diffusion pattern the closer the mask is spaced to the diffusion pattern. Preferably, the ratio of the pitch of the optical elements to the width of the symbol at the diffusion surface is less than 1:2, preferably less than 1:4, more preferably less than 1:6 and most preferably approximately 1:10.Type: GrantFiled: January 26, 2005Date of Patent: February 13, 2007Assignee: GELcore LLCInventor: Patrick Martineau
-
Patent number: 7170751Abstract: A retaining device holds a PCB to a heat sink that has channels for receiving the retaining device. The retaining device includes a body having portions configured for receipt into the channels of the heat sink and moveable tabs and protuberances protruding away from a first surface of each moveable tab. A method for holding the PCB to the heat sink is disclosed. A lighting assembly that includes the retaining device is also disclosed.Type: GrantFiled: January 5, 2005Date of Patent: January 30, 2007Assignee: GELcore LLCInventor: Mark J. Mayer
-
Patent number: 7160140Abstract: A string light engine includes a plurality of LEDs, a plurality of IDC connectors, and an insulated flexible conductor. Each IDC connector is in electrical communication with at least one of the plurality of LEDs and is operatively mechanically connected to at least one of the plurality of LEDs. The IDC connectors attach to the conductor.Type: GrantFiled: July 13, 2005Date of Patent: January 9, 2007Assignee: GELcore LLCInventors: Matthew Mrakovich, Ronald Brengartner, Jr.
-
Patent number: 7145179Abstract: A light engine (16) includes at least one LED (12) for generating light of one of a plurality of wavelengths. The LED (12) is disposed on the magnetic core printed circuit board (14). A heatsink (26) is disposed in thermal communication with a base (24) and the LED (12) for conducting thermal energy away from the LED (12). The light engine (16) is magnetically attached to the heatsink (26) via a magnet (50) which is attached to the heatsink (26) to create that a magnetic force between the magnetic core board (14) and the heatsink (26).Type: GrantFiled: October 12, 2004Date of Patent: December 5, 2006Assignee: GELcore LLCInventor: James Petroski
-
Patent number: 7141828Abstract: A p-type contact (30) is disclosed for flip chip bonding and electrically contacting a p-type group III-nitride layer (28) of a group III-nitride flip chip light emitting diode die (10) with a bonding pad (60). A first palladium layer (42) is disposed on the p-type group III-nitride layer (28). The first palladium layer (42) is diffused through a native oxide of the p-type group III-nitride layer (28) to make electrical contact with the p-type group III-nitride layer (28). A reflective silver layer (44) is disposed on the first palladium layer (42). A second palladium layer (46) is disposed on the silver layer (44). A bonding stack (48) including at least two layers (50, 52, 54) is disposed on the second palladium layer (46). The bonding stack (48) is adapted for flip chip bonding the p-type layer (28) to the bonding pad (60).Type: GrantFiled: March 19, 2003Date of Patent: November 28, 2006Assignee: GELcore, LLCInventor: Hari S. Venugopalan
-
Patent number: 7125734Abstract: In a method for fabricating a flip-chip light emitting diode device, a submount wafer is populated with a plurality of the light emitting diode dies. Each device die is flip-chip bonded to the submount. Subsequent to the flip-chip bonding, a growth substrate is removed. The entire submount is immersed in the etchant solution, exposed to the light for a prespecified period of time, removed from the solution, dried and diced into a plurality of LEDs. The LEDs are immediately packaged without any further processing.Type: GrantFiled: March 9, 2005Date of Patent: October 24, 2006Assignee: GELcore, LLCInventors: Michael J. Sackrison, Hari S. Venugopalan, Xiang Gao
-
Patent number: 7119372Abstract: A flip chip light emitting diode die (10, 10?, 10?) includes a light-transmissive substrate (12, 12?, 12?) and semiconductor layers (14, 14?, 14?) that are selectively patterned to define a device mesa (30, 30?, 30?). A reflective electrode (34, 34?, 34?) is disposed on the device mesa (30, 30?, 30?). The reflective electrode (34, 34?, 34?) includes a light-transmissive insulating grid (42, 42?, 60, 80) disposed over the device mesa (30, 30?, 30?), an ohmic material (44, 44?, 44?, 62) disposed at openings of the insulating grid (42, 42?, 60, 80) and making ohmic contact with the device mesa (30, 30?, 30?), and an electrically conductive reflective film (46, 46?, 46?) disposed over the insulating grid (42, 42?, 60, 80) and the ohmic material (44, 44?, 44?, 62). The electrically conductive reflective film (46, 46?, 46?) electrically communicates with the ohmic material (44, 44?, 44?, 62).Type: GrantFiled: October 24, 2003Date of Patent: October 10, 2006Assignee: GELcore, LLCInventors: Edward B. Stokes, Mark P. D'Evelyn, Stanton E. Weaver, Peter M. Sandvik, Abasifreke U. Ebong, Xian-an Cao, Steven F. LeBoeuf, Nikhil R. Taskar
-
Patent number: 7119488Abstract: A fluorescent lamp including a phosphor layer comprising a phosphor blend including four or more optimized phosphors emitting within a specific spectral range to optimize luminosity for a given color rendering index (CRI) and color coordinated temperature (CCT). The blend will include at least four phosphors selected from the following: a blue phosphor having an emission peak at 440–490 nm, a blue-green phosphor having an emission peak at 475–525 nm, a green phosphor having an emission peak at 515–550 nm, an orange phosphor having an emission peak from 550–600 nm, a deep red phosphor having an emission peak at 615–665 nm, and a red phosphor having an emission peak at 600–670 nm.Type: GrantFiled: March 30, 2005Date of Patent: October 10, 2006Assignees: General Electric Company, GELcore, LLCInventors: Thomas Soules, William Beers, Michael Greci, Anant Setlur, Holly Comanzo, Venkatesan Manivannan, Alok Srivastava
-
Patent number: 7114841Abstract: An LED light engine includes a flexible electrical cable and a plurality of LEDs. The flexible electrical cable includes first, second and third electrical conductors and an electrically insulating covering for the electrical conductors. The conductors are arranged substantially parallel with one another having an insulating material therebetween. A first LED including a first lead electrically connects to the first electrical conductor and a second lead of the first LED electrically connects to the second conductor. A second LED includes a first lead electrically connected to the second electrical conductor and a second lead electrically connected to the third electrical conductor. A third LED includes first and second leads electrically connected to the second conductor. The third LED is interposed between the first LED and the second LED.Type: GrantFiled: March 22, 2004Date of Patent: October 3, 2006Assignee: GELcore LLCInventors: Srinath K. Aanegola, Mathew Sommers, Matthew Mrakovich, Christopher L. Bohler, Michael McCoy