Patents Assigned to General Electric Company
  • Patent number: 9897003
    Abstract: A method of operating a turbine assembly is provided. The method includes receiving a flow of air at a filter house that includes a first heat exchanger. The temperature of the air is controlled with the first heat exchanger by one of selectively cooling the air and by selectively heating the air. The air is then channeled from the first heat exchanger to a second heat exchanger to facilitate cooling the air.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: February 20, 2018
    Assignee: General Electric Company
    Inventors: Abbas Motakef, Julio Enrique Mestroni
  • Patent number: 9897080
    Abstract: A liquid pumping system includes at least two water cylinders that are each controlled by a hydraulic piston. A rotary valve controls the hydraulic pistons. The rotary valve has an inner unit that rotates within an outer unit. Slots provided between the inner and outer units control the duration, rate and direction of hydraulic fluid supply to the hydraulic piston. A liquid pumping process comprises distributing an initial flow of pressurized hydraulic fluid between the hydraulic cylinders. The hydraulic cylinders move through a cycle in a phased relationship to provide a constant sum of flow rates from the liquid pumps. In a water treating process, feed water is pumped through the membrane unit. Brine from the membrane unit is returned to each liquid pump while that liquid pump is feeding water to the membrane unit.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: February 20, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventor: Dean David Marschke
  • Patent number: 9897013
    Abstract: A system is provided. The system includes a gas turbine, the gas turbine having an operating space during operation and a current operating point during operation, a computing device communicatively coupled to the gas turbine and configured to calculate, based on the current operating point of the gas turbine, the operating space for the gas turbine by solving for a plurality of corner points that define the operating space, and display, to a user, a graph that includes the calculated operating space and the current operating point.
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: February 20, 2018
    Assignee: General Electric Company
    Inventor: Benjamin David Laskowski
  • Patent number: 9896962
    Abstract: A system includes a trip manifold assembly (TMA). The TMA includes a plurality of block valves configured to receive a flow of fluid from a hydraulic power unit (HPU), and a plurality of solenoid valves configured to admit the flow of fluid to actuate the plurality of block valves, a plurality of dump valves, and a plurality of relay valves of the TMA. The plurality of solenoid valves is configured to admit a respective portion of the flow of fluid. The plurality of dump valves is configured to depressurize a trip header of the TMA as an output to operate a plurality of stop valves coupled to a turbine system. The TMA is configured to regulate the flow of fluid to control the operation of the plurality of stop valves as a mechanism to interrupt an operation of the turbine system.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: February 20, 2018
    Assignee: General Electric Company
    Inventors: Troy Gilchrist Wojick, Ricardo Stack, Joe Lisowski, Chris Bradford
  • Patent number: 9897006
    Abstract: A cooling system for a hot gas path component includes a substrate having an outer surface and an inner surface. The inner surface defines at least one interior space. A passage is formed in the substrate between the outer surface and the inner surface. An access passage is formed in the substrate and extends from the outer surface to the inner space. The access passage is formed at a first acute angle to the passage and includes a particle collection chamber. The access passage is configured to channel a cooling fluid to the passage. Furthermore, the passage is configured to channel the cooling fluid therethrough to cool the substrate.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: February 20, 2018
    Assignee: General Electric Company
    Inventors: Carlos Miguel Miranda, Benjamin Paul Lacy
  • Patent number: 9897658
    Abstract: The present disclosure is directed to a system and method for controlling an energy storage device by more accurately detecting an end-of-discharge voltage of the energy storage device. More specifically, in one embodiment, the method includes determining an end-of-discharge voltage threshold for the energy storage device. Another step includes filtering the end-of-discharge voltage threshold via a filter. The method also includes adjusting a time constant of the filter based on at least one voltage-current condition. Still a further step includes comparing the filtered end-of-discharge voltage threshold and a terminal voltage of the energy storage device. Based on the comparison, the method includes determining a change of state of the energy storage device. Thus, the energy storage device can be controlled based on the change of state.
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: February 20, 2018
    Assignee: General Electric Company
    Inventors: Jiucai Zhang, Charles Clarence Hicks, Jr., Sam T. Liu, Robert A. Kaucic, Leng Mao, David E. James, Herman Lucas Norbert Wiegman, Mert Geveci
  • Patent number: 9897021
    Abstract: A system includes a combustion engine having an intake manifold and an exhaust manifold, an exhaust gas recirculation (EGR) system coupled to the combustion engine and configured to route exhaust generated by the combustion engine from the exhaust manifold to the intake manifold, and a first knock sensor coupled to the combustion engine and configured to measure vibrations of the combustion engine and output a first vibration signal. The system also includes a controller communicatively coupled to the combustion engine, the knock sensor, the EGR system, or any combination thereof. The controller is configured to determine a peak firing pressure (PFP) within the combustion engine and control operations of both the combustion engine and the EGR system based on the PFP.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: February 20, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Jeffrey Jacob Bizub, Dhruval Bhatt
  • Patent number: 9899838
    Abstract: Power delivery systems and methods described herein conductively couple several input lines with a cable that conducts a multi-phase electric current. The input lines separately conduct different phases of the electric current. Output lines are conductively coupled with plural machines, and separately conduct the different phases of the electric current. Plural switching devices are conductively coupled with the input lines and with the output lines, and are used to control the switching devices in order to conduct the different phases of the electric current to the machines. A first set of the switching devices is closed to separately conduct the different phases of the electric current to a first machine of the machines. A different, second set of the switching devices is separately closed to separately conduct the different phases of the electric current to a different, second machine of the machines.
    Type: Grant
    Filed: July 22, 2014
    Date of Patent: February 20, 2018
    Assignee: General Electric Company
    Inventors: Ahmed Elasser, Jeremy Daniel Van Dam, David Allan Torrey
  • Patent number: 9897127
    Abstract: A fastening device may include a hollow void. The hollow void may contain an inner coil proximate to a first end of the device, a sensing portion to sense a characteristic associated with the fastening device during a sensing time window, and a controller. The controller may rectify an alternating current from the inner coil during a charging time window, store energy associated with the rectified alternating current, and use the stored energy to charge the sensing portion during the sensing time window. An outer coil outside the fastening device may be located proximate to a second end of the device as compared to the inner coil. An interface portion outside the fastening device may provide an alternating current to the outer coil during the charging time window, detect the sensed characteristic via the outer coil during the sensing time window, and transmit an indication of the detected characteristic value.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: February 20, 2018
    Assignee: General Electric Company
    Inventors: John Erik Hershey, Matthew Christian Nielsen, Christopher Donald Johnson, Michael Joseph Dell'Anno, Joji Joykutty
  • Patent number: 9899176
    Abstract: A circuit breaker including a case, a trip mechanism, and a trip lever moveable between a first position and a second position. The trip lever includes a first end selectively contacting the trip mechanism and a second end opposite the first end. The circuit breaker also includes a biasing device including a housing coupled to the case and a lever arm coupled to the housing. The lever arm includes an engagement surface in contact with the second end and configured to move between an initial position corresponding to the first position and a final position corresponding to the second position. The biasing device also includes a bias member extending between the housing and the lever arm and biasing the engagement surface against the second end. The lever arm exerts a first torque in the first position and exerts a second torque different from the first torque in the second position.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: February 20, 2018
    Assignee: General Electric Company
    Inventors: Hemraj Keda Thorat, Mahadeva Mallappa Mittu, Amit Bose, Mahesh Jaywant Rane, Gajendra Vijaykumar Kadam
  • Patent number: 9898840
    Abstract: A method of continuous motion digital tomosynthesis includes exposing an object to a programed intensity x-ray beam as an x-ray source travels a pre-determined path, accumulating a signal charge from the x-ray beam, recording the accumulated signal charge into a digital frame image representing raw baseline data, acquiring information on the source's and the detector's position when the recording occurs, compressing the raw baseline data into compressed views, where each respective compressed view is formed by combining the raw data readouts of the respective compressed view, and reconstructing a volumetric breast image by processing each respective compressed view with a reconstruction process function that incorporates the acquired position information and a spatial sampling corresponding to the compressed views. A system configured to implement the method and a computer-readable medium are also disclosed.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: February 20, 2018
    Assignee: General Electric Company
    Inventors: Remy Andre Klausz, John Eric Tkaczyk, Henri Souchay, Scott Stephen Zelakiewicz
  • Patent number: 9897678
    Abstract: Systems and methods for correcting magnetic resonance (MR) data are provided. One method includes receiving the MR data and correcting errors present in the MR data due to non-uniformities in magnetic field gradients used to generate the diffusion weighted MR signals. The method also includes correcting errors present in the MR data due to concomitant gradient fields present in the magnetic field gradients by using one or more gradient terms. At least one of the gradient terms is corrected based on the correction of errors present in the MR data due to the non-uniformities in the magnetic field gradients.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: February 20, 2018
    Assignee: General Electric Company
    Inventors: Ek Tsoon Tan, Christopher Judson Hardy, Kevin Franklin King, Zachary William Slavens, Luca Marinelli, Robert Marc Lebel
  • Patent number: 9890695
    Abstract: A method of operating a reciprocating engine comprises recirculating exhaust gas from a first cylinder of the engine to an intake stream or air-fuel mixture of a second cylinder of the engine such that a boost pressure of the first cylinder is greater than a boost pressure of the second cylinder. An engine retrofit system and two-cycle engine employing aspects of the method are also disclosed. The present invention has been described in terms of specific embodiment(s), and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: February 13, 2018
    Assignee: General Electric Company
    Inventor: Adam Edgar Klingbeil
  • Patent number: 9890710
    Abstract: A power plant includes a gas turbine having a combustor downstream from a compressor, a turbine disposed downstream from the combustor and an exhaust duct downstream from an outlet of the turbine. The combustor includes an extraction port that is in fluid communication with a hot gas path of the combustor. The extraction port defines a flow path for a stream of combustion gas to flow out of the hot gas path. The exhaust duct receives exhaust gas from the turbine outlet. A coolant injection system injects a coolant into the stream of combustion gas upstream from the exhaust duct such that the stream of combustion gas blends with the exhaust gas from the turbine within the exhaust duct and forms an exhaust gas mixture within the exhaust duct. A heat exchanger is disposed downstream from the exhaust duct and receives the exhaust gas mixture from the exhaust duct.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: February 13, 2018
    Assignee: General Electric Company
    Inventors: Joseph Philip Klosinski, Alston Ilford Scipio, Sanji Ekanayake
  • Patent number: 9888894
    Abstract: Acquisition of X-ray transmission data at three or more energy levels is described. Various implementations utilize generator waveforms that utilize fast-switching, slow-switching, or a combination of fast- and slow-switching to transition between X-ray energy levels. In addition, various sampling arrangements for sampling and/or binning three or more energy levels of X-ray transmission data are discussed. The use of these data in subsequent processing steps, such for material decomposition and/or improvement of dual-energy material decomposition processing, are also described.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: February 13, 2018
    Assignee: General Electric Company
    Inventors: Uwe Wiedmann, Peter Michael Edic, Bruno Kristiaan Bernard De Man, Naveen Stephan Chandra, Jed Douglas Pack, Yannan Jin, Denis Perrillat-Amede, Jean-Francois Larroux
  • Patent number: 9890709
    Abstract: A method and system to extract gas from a gas turbine having at least one gas extraction mechanism placed at the turbine section that extracts exhaust gas directly from the turbine stages through the turbine casing, providing a first exhaust gas path that extends from the turbine section through the exhaust section to the exhaust gas outlet, and a second exhaust gas path for extracted exhaust gas extending directly from the turbine stages inside the turbine casing to a duct outside of the turbine casing. The gas extraction system and method can be applied to a cogeneration system.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: February 13, 2018
    Assignee: General Electric Company
    Inventors: Joseph Philip Klosinski, Michael Anthony Cocca, Alston Ilford Scipio, Patrick C. Bowling, Sanji Ekanayake
  • Patent number: 9890022
    Abstract: The present disclosure is directed to a suspension system for a wind turbine rotor blade and methods for suspending said rotor blade from a hub thereof. The method includes positioning the rotor blade in a substantially six o'clock position. Another step includes removing at least one root attachment assembly from an adjacent rotor blade and providing at least one passageway from an exterior surface of the adjacent rotor blade to the root attachment assembly. Still another step includes inserting a cable through the passageway such that the cable engages an interior surface of the adjacent rotor blade and extends from within the adjacent rotor blade to the lowered rotor blade. The method further includes securing the cable to the rotor blade at an attachment location. Next, the method includes lowering the rotor blade a vertical distance from the hub until the blade is supported by the cable.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: February 13, 2018
    Assignee: General Electric Company
    Inventors: Ulrich Werner Neumann, Gaylon Mitchell Pfeiffer, Kevin Costain, Stephanie Willman
  • Patent number: 9889566
    Abstract: A robot system and method are provided that move an articulable arm relative to a target object. Perception information corresponding to a position of the arm relative to the target object is acquired at an acquisition rate. Movement of the arm is controlled at a control rate that is at least one of faster than or unsynchronized with the acquisition rate. Predicted position information representative of a predicted positioning of the arm is provided using the perception information. The arm is controlled using the perception information and the predicted position information.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: February 13, 2018
    Assignee: General Electric Company
    Inventors: Huan Tan, John Michael Lizzi, Charles Theurer, Tai-Peng Tian, Balajee Kannan
  • Patent number: 9889539
    Abstract: Methods include converting a residual surface stress in a component made by a metal powder additive manufacturing process. The component includes a body having an external surface and an internal opening passing at least partially through the body, the internal opening including an unused metal powder from the additive manufacturing process therein. Residual surface stress is converted in at least a portion of a body about the internal opening by applying a pressure in the internal opening using a non-compressible fluid and the unused metal powder. The method is advantageous for use with gamma primed hardened superalloys. An additively manufactured component including the stress-converted internal opening is also disclosed.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: February 13, 2018
    Assignee: General Electric Company
    Inventors: Julius Andreas Schurb, Thomas Etter, Brendon James Leary, Felix Martin Gerhard Roerig
  • Patent number: D810096
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: February 13, 2018
    Assignee: General Electric Company
    Inventors: Daniel Eduardo Groszmann, Laurent Jacques Node-Langlois, Taylor Braun-Jones