Patents Assigned to Gigaphoton
-
Patent number: 11036143Abstract: An extreme ultraviolet light generation apparatus that generates extreme ultraviolet light by irradiating a target with a pulse laser beam includes: a chamber; a magnet that is positioned outside the chamber and forms a magnetic field (70) inside the chamber; a discharge path (37a) that is opened at a position on an inner wall surface of the chamber where the inner wall surface intersects a central axis of the magnetic field (70) and through which gas inside the chamber is discharged; and a gas supply unit (10a) configured to supply gas into the discharge path (37a) through an inner wall surface of the discharge path.Type: GrantFiled: April 15, 2020Date of Patent: June 15, 2021Assignee: Gigaphoton Inc.Inventor: Atsushi Ueda
-
Publication number: 20210167568Abstract: A discharge excitation gas laser device includes: first and second discharge electrodes disposed to face each other; a plurality of peaking capacitors connected to the first discharge electrode; a charger; a plurality of pulse power modules, each one of the pulse power modules including a charging capacitor to which a charged voltage is applied from the charger, a pulse compression circuit that pulse-compresses and outputs electrical energy stored in the charging capacitor as an output pulse to a corresponding peaking capacitor, and a switch disposed between the charging capacitor and the pulse compression circuit; a plurality of output pulse sensors, each one of the output pulse sensors detecting an output pulse output by a corresponding pulse power module; and a control unit configured to control, based on a detection result of each of the output pulse sensor, a timing of a switch signal to be input to a corresponding switch.Type: ApplicationFiled: January 20, 2021Publication date: June 3, 2021Applicant: Gigaphoton Inc.Inventors: Hiroshi UMEDA, Osamu WAKABAYASHI
-
Patent number: 11025026Abstract: A laser system including: A. a laser apparatus configured to output a pulse laser beam; B. an optical pulse stretcher including a delay optical path for expanding a pulse width of the pulse laser beam; and C. a phase optical element included in the delay optical path and having a function of spatially and randomly shifting a phase of the pulse laser beam. The phase optical element includes a plurality of types of cells providing different amounts of phase shift to the pulse laser beam and arranged irregularly in any direction.Type: GrantFiled: June 3, 2019Date of Patent: June 1, 2021Assignee: Gigaphoton Inc.Inventor: Takashi Onose
-
Publication number: 20210149185Abstract: A beam delivery system according to an aspect of the present disclosure is used for an extreme ultraviolet light generation apparatus and includes a propagation mirror disposed on an optical path between a laser apparatus and a condensation optical system and configured to change the propagation direction of a pulse laser beam, and a curvature mirror disposed on an optical path between the propagation mirror and the condensation optical system and having a concave reflective surface configured to convert the pulse laser beam to be incident on the condensation optical system into a convergent beam. The curvature mirror has a focal length selected so that the beam spread angle of the pulse laser beam from the curvature mirror is constant irrespective of thermal deformation of the propagation mirror or constant with change in a predetermined allowable range irrespective of thermal deformation of the propagation mirror.Type: ApplicationFiled: September 29, 2020Publication date: May 20, 2021Applicant: Gigaphoton Inc.Inventors: Takashi SUGANUMA, Takahiro TATSUMI
-
Patent number: 11007778Abstract: A droplet discharge apparatus may include a droplet discharge unit configured to discharge droplets of a target substance stored in a tank at intervals through an opening of a nozzle connected to the tank, a speed sensor configured to measure the speed of a droplet discharged from the droplet discharge unit, and a calculation unit configured to calculate the volume of the target substance consumed per unit time, based on cross-sectional area of the opening of the nozzle and the speed of the droplet.Type: GrantFiled: August 10, 2019Date of Patent: May 18, 2021Assignee: Gigaphoton Inc.Inventor: Katsuhiko Wakana
-
Patent number: 11003085Abstract: In an extreme ultraviolet light generating apparatus, the film thickness of debris adhering to a surface of a component can be measured easily without need of large-scale removal of the component disposed in the chamber. The extreme ultraviolet light generating apparatus includes a chamber in which a droplet made of a target material is irradiated with a laser beam and extreme ultraviolet light is generated, an EUV light collector mirror that is an optical element disposed in the chamber, and a measurement device movable along a surface of the EUV light collector mirror and configured to measure the film thickness of the target material adhering to the surface.Type: GrantFiled: December 31, 2019Date of Patent: May 11, 2021Assignee: Gigaphoton Inc.Inventor: Katsuhiko Sugisawa
-
Patent number: 11006511Abstract: A laser device includes: a master oscillator (100) configured to output a pulse laser beam (L) based on a light emission trigger signal (S21); a delay circuit (153) configured to generate a switching signal (S10) after a predetermined delay time has elapsed since reception of the light emission trigger signal (S21); a high voltage switch (304) configured to generate a high voltage pulse based on the switching signal (S10); an optical shutter (32k) positioned on the optical path of the pulse laser beam (L) and driven based on the high voltage pulse; and a high voltage monitor (151) configured to detect the high voltage pulse and transmit a high voltage pulse sensing signal (S6) to the delay circuit (153). The delay circuit (153) determines the delay time based on the light emission trigger signal (S21) and the high voltage pulse sensing signal (S6).Type: GrantFiled: April 9, 2019Date of Patent: May 11, 2021Assignee: Gigaphoton Inc.Inventor: Motoki Niwano
-
Publication number: 20210124275Abstract: An extreme ultraviolet light condensation mirror includes: a substrate; a multi-layer reflective film on the substrate and configured to reflect extreme ultraviolet light having a wavelength of 13.5 nm; and a protective film on the multi-layer reflective film. The protective film includes an oxide silicon layer on the multi-layer reflective film and a titanium oxide layer on the oxide silicon layer having one surface exposed. When x represents the thickness of the titanium oxide layer, the phase of standing wave of the extreme ultraviolet light at the position of the one surface for the maximum reflectance of the extreme ultraviolet light is defined to be zero, and a direction from the one surface toward the multi-layer reflective film is defined to be negative, the position of the one surface is a position at which the phase y of standing wave satisfies the expression below. ?0.313x3+1.44x2+2.57x?51.Type: ApplicationFiled: August 27, 2020Publication date: April 29, 2021Applicant: Gigaphoton Inc.Inventor: Tomoyoshi TOIDA
-
Patent number: 10990016Abstract: An extreme ultraviolet light generation device includes: a chamber (2) having inside a plasma generating region (22) in which plasma is generated from a droplet of a target substance; an EUV light focusing mirror (23) having a reflection surface (23A) that reflects EUV light generated by the droplet being turned into the plasma in the plasma generating region; a magnetic field generation unit configured to generate a magnetic field ML for converging, toward a wall of the chamber, a charged particle generated by the droplet being turned into the plasma; and an etching gas supply unit (32) configured to supply etching gas along the reflection surface from an outer periphery of the EUV light focusing mirror, the etching gas supply unit being configured such that flow speed of etching gas supplied from one side of a plane S is higher than flow speed of etching gas supplied from the other side.Type: GrantFiled: October 10, 2019Date of Patent: April 27, 2021Assignee: Gigaphoton Inc.Inventor: Atsushi Ueda
-
Publication number: 20210116294Abstract: An energy measuring apparatus according to one aspect of the present disclosure includes a first beam splitter, a second beam splitter, a third beam splitter, and a fourth beam splitter, which sequentially reflect part of a main beam and input the beam to an energy sensor. The first beam splitter, the second beam splitter, the third beam splitter, and the fourth beam splitter are each arranged to have such an incident angle and a folding direction of an optical path as to suppress a change in detection value of the energy sensor due to a change in incident angle and a change in polarization purity of the main beam.Type: ApplicationFiled: December 7, 2020Publication date: April 22, 2021Applicant: Gigaphoton Inc.Inventors: Yosuke WATANABE, Masato MORIYA
-
Publication number: 20210117931Abstract: A maintenance management method for a lithography system according to a viewpoint of the present disclosure includes organizing and saving operating information for each of lithography cells that are each an apparatus group formed of a set of apparatuses and form the lithography system, organizing and saving maintenance information on consumables for each of the lithography cells, calculating a standard maintenance timing for each of the consumables for each of the lithography cells based on the operating information and the maintenance information on the consumable for each of the lithography cells, creating a maintenance schedule plan for each of the lithography cells or for each of manufacturing lines based on the standard maintenance timing, information on a downtime, and information on a loss cost due to the downtime for each of the lithography cells or for each of the manufacturing lines, and outputting the result of the creation of the maintenance schedule plan.Type: ApplicationFiled: December 28, 2020Publication date: April 22, 2021Applicant: Gigaphoton Inc.Inventors: Kunihiko ABE, Yuji MINEGISHI, Osamu WAKABAYASHI
-
Publication number: 20210109262Abstract: An extreme ultraviolet light condensation mirror may include a reflective surface formed in a concave shape and configured to diffract a laser beam incident from a first focal point and having a wavelength longer than a wavelength of extreme ultraviolet light. The reflective surface may be provided with a plurality of first reflection portions, a plurality of second reflection portions, a plurality of first stepped portions, and a plurality of second stepped portions. The first and second stepped portions may have such heights that the laser beam obtains phases opposite to each other through reflection at the first and second reflection portions adjacent to each other. The height of each first stepped portion may be equal to or higher than the height of each second stepped portion. The height of at least one of the first stepped portions may be higher than the height of each second stepped portion.Type: ApplicationFiled: August 27, 2020Publication date: April 15, 2021Applicant: Gigaphoton Inc.Inventor: Masayuki MORITA
-
Patent number: 10976664Abstract: A target image capturing device according to an aspect of the present disclosure includes: a delay circuit configured to receive a timing signal from outside and output a first trigger signal at a timing delayed by a first delay time from the reception of the timing signal; an illumination light source configured to emit light based on the first trigger signal; an image capturing unit disposed to capture an image of a shadow of a target to be observed, which is generated when the target is irradiated with the light emitted from the illumination light source; a processing unit configured to perform image processing including processing of measuring a background luminance from the image captured by the image capturing unit; and a control unit configured to perform control to adjust the first delay time based on the background luminance.Type: GrantFiled: April 19, 2019Date of Patent: April 13, 2021Assignee: Gigaphoton Inc.Inventor: Hirokazu Hosoda
-
Patent number: 10976665Abstract: An extreme ultraviolet light generation apparatus includes: a chamber having an internal space in which a laser beam is condensed and plasma generation occurs at a focusing position of the laser beam; a condensing mirror configured to condense extreme ultraviolet light generated through the plasma generation; and a magnetic field generation unit configured to generate a magnetic field. The condensing mirror includes a substrate, a reflective layer, and a protective layer. The protective layer includes a first protective layer disposed in a first region, and a second protective layer disposed in a second region. A material of the first protective layer is less dense than a material of the second protective layer. The material of the second protective layer has a transmittance for the extreme ultraviolet light higher than that of the material of the first protective layer.Type: GrantFiled: August 10, 2020Date of Patent: April 13, 2021Assignee: Gigaphoton Inc.Inventor: Yoshiyuki Honda
-
Publication number: 20210103118Abstract: An optical apparatus may include a housing having an opened front face, an optical unit freely movable into and out of an internal space of the housing through the front face, and a positioning portion disposed on a back side of the optical unit in the internal space. A base plate of the optical unit may include first and second convex portions disposed on a base end face of the base plate. The second convex portion may be disposed at a position different from the first convex portion in a width direction of the base plate. The positioning portion may include a V block having a V groove shape at a part contacting the first convex portion, and a flat block having a flat surface shape at a part contacting the second convex portion. The optical unit may be positioned in the internal space through the contact.Type: ApplicationFiled: August 26, 2020Publication date: April 8, 2021Applicant: Gigaphoton Inc.Inventors: Hiroshi SOMEYA, Yukio WATANABE
-
Patent number: 10971886Abstract: A laser apparatus includes a chamber accommodating a pair of discharge electrodes, a gas supply and exhaust device configured to supply laser gas to an interior of the chamber and exhaust laser gas from the interior of the chamber, and a controller. The controller performs first control to control the gas supply and exhaust device so as to suspend laser oscillation and replace laser gas in the chamber at every first number of pulses or first elapsed time, and second control to control the gas supply and exhaust device so as to suspend laser oscillation and replace laser gas in the chamber before the first control at every second number of pulses less than the first number of pulses or second elapsed time less than the first elapsed time.Type: GrantFiled: February 4, 2019Date of Patent: April 6, 2021Assignee: Gigaphoton Inc.Inventors: Takeshi Asayama, Hiroyuki Masuda
-
Patent number: 10971883Abstract: A gas purification system may include: a circulation gas pipe in which a second end is connected at a first position to a second pipe through which gas is supplied from a gas supply source; a booster pump; a gas purification unit; a first tank in the circulation gas pipe; a first valve positioned between the gas supply source and the first position, the first valve having an open position and a closed position; and a second valve positioned between the first tank and the second end, the second valve having an open position and a closed position, the second valve configured to be in the closed position when the first valve is in the open position.Type: GrantFiled: November 1, 2018Date of Patent: April 6, 2021Assignee: Gigaphoton Inc.Inventors: Natsushi Suzuki, Osamu Wakabayashi, Hiroaki Tsushima, Masanori Yashiro
-
Patent number: 10971887Abstract: A laser device may include a light source configured to emit a laser beam in burst operation, an optical sensor configured to acquire a cross sectional image of the laser beam during a certain period for every certain cycle, an image processor configured to receive an input of an image signal of the cross sectional image outputted from the optical sensor and output beam relating information about the laser beam, a beam traveling direction adjuster configured to adjust a traveling direction of the laser beam, and a controller configured to control the beam traveling direction adjuster based on the beam relating information when at least a part of a period in which the optical sensor acquires the cross sectional image is overlapped with a period in which the light source emits a laser beam.Type: GrantFiled: August 10, 2018Date of Patent: April 6, 2021Assignee: Gigaphoton Inc.Inventor: Tooru Abe
-
Patent number: 10965090Abstract: A laser apparatus according to the present disclosure includes: a laser chamber including a pair of electrodes and configured to emit, at each of a plurality of pulse repetition frequencies, a pulse laser beam having a pulse energy corresponding to a voltage applied between the electrodes; an energy detector provided on an optical path of the pulse laser beam and configured to detect the pulse energy of the pulse laser beam; a voltage control unit configured to control the applied voltage based on a target pulse energy and the pulse energy detected by the energy detector; and a pulse energy control unit configured to periodically vary the target pulse energy at a modulation frequency corresponding to each of the pulse repetition frequencies with a reference energy being a center of variation.Type: GrantFiled: May 3, 2019Date of Patent: March 30, 2021Assignee: Gigaphoton Inc.Inventor: Takeshi Asayama
-
Patent number: 10965087Abstract: Provided is a laser device that includes a laser chamber in which a pair of discharge electrodes are disposed; a line narrowing optical system including a grating disposed in a position outside the laser chamber; a beam expander optical system that increases a diameter of a light beam, outputted from the laser chamber and traveling toward the grating, in a first direction parallel to a discharge direction between the discharge electrodes and in a second direction orthogonal to the discharge direction; and a holding platform that is formed as a component separate from the laser chamber and the grating, holds the beam expander optical system, and forms along with the beam expander optical system a beam expander unit.Type: GrantFiled: February 4, 2019Date of Patent: March 30, 2021Assignee: Gigaphoton Inc.Inventors: Hirotaka Miyamoto, Osamu Wakabayashi