Abstract: A battery electric device includes a battery cell, e.g., a pouch, prismatic, or cylindrical cell, connectable to an electric load, and a direct-to-air thermoelectric assembly (TEA) or another heat pump connected to a surface of the cell. A pressure control device maintains constant pressure on the cell surface when the cell is connected to the load. Connection to the load causes the TEA/heat pump to pump heat from the cell. A sensor, e.g., thermocouple(s) and/or heat flux sensor(s), generate an output voltage signal indicative of the quantity of heat. A battery system includes the device and a processor in communication with the cell, the load, and the power supply. The processor generates an electronic control signal in response to the quantity of heat.
Type:
Grant
Filed:
January 24, 2022
Date of Patent:
October 24, 2023
Assignees:
GM Global Technology Operations LLC
Inventors:
Song-Yul Choe, Yang Hu, Taylor R. Garrick
Abstract: An energy storage assembly includes a plurality of battery cells electrically connected to each other to form a battery pack in which the battery cells are grouped together to form a first stack of cells and a second stack of cells. The energy storage assembly also includes a first barrier disposed between the first stack of cells and the second stack of cells to reduce heat transfer between the first stack of cells and the second stack of cells. The energy storage assembly further includes a coolant plate disposed along the battery cells. The coolant plate defines a channel for guiding a fluid therethrough to thermally transfer heat away from the battery cells. The coolant plate defines a slot spaced from the channel, and the slot axially aligns with the first barrier to reduce heat transfer between the first stack of cells and the second stack of cells.
Type:
Grant
Filed:
August 26, 2020
Date of Patent:
October 24, 2023
Assignee:
GM Global Technology Operations LLC
Inventors:
Karl C. Dorgan, Anil Yadav, Yangbing Zeng, Konrad M. Brown, Anandakrishnan S, Robert J. Schoenherr, Nicholas R. Bratton
Abstract: A protection system for a high-voltage component includes a switching circuit and a protection controller. The switching circuit changes a variable arrangement of multiple battery packs between a parallel arrangement and a series arrangement. The protection controller commands the switching circuit into the series arrangement in response to a recharging session, commands a current flow in the recharging session, measures a measured voltage between an input node and a floating chassis ground of the high-voltage component, advances a timer while the measured voltage indicates a presence of an improper voltage, and cancels the recharging session in response to the presence of the improper voltage for greater than an exposure time. The recharging session provides a direct-current fast-charging voltage to battery packs in the series arrangement, and is greater than the battery voltage.
Type:
Grant
Filed:
November 17, 2021
Date of Patent:
October 17, 2023
Assignee:
GM Global Technology Operations LLC
Inventors:
Konking Wang, Emil Francu, Li-Pen J. Ho, Kevin J. Robinet
Abstract: An electric drive system, method and apparatus includes a rechargeable energy storage unit, a power inverter, and a rotary electric machine. Transfer of electrical power between the rechargeable energy storage unit and the rotary electric machine is governed by a pulse width modulation (PWM) switching frequency, which is one of a non-six-step switching mode or a six-step switching mode. Executable instructions determine a rotational speed, a torque command, a torque direction, a bus voltage, and a hysteresis band, determine a modulation index command in response to the rotational speed, the torque command, the torque direction, and the bus voltage, and command operation of the rotary electric machine in one of the non-six-step switching mode or the six-step switching mode employing the modulation index command.
Type:
Grant
Filed:
November 22, 2021
Date of Patent:
October 17, 2023
Assignee:
GM Global Technology Operations LLC
Inventors:
Brent S. Gagas, Kerrie M. Spaven, Brian A. Welchko
Abstract: A reinforced composite assembly includes a first sheet made of carbon fiber and having a first perimeter, a second sheet made of a non-carbon fiber material and having a second perimeter, wherein the second sheet is disposed atop the first sheet within the first perimeter, and a metallic plate having a third perimeter, wherein the metallic plate is disposed atop the second sheet within the second perimeter. The metallic plate has a plurality of holes formed therein about a perimeter of the metallic plate and defining a plurality of respective bridge portions between each of the holes and an adjacent outer edge of the metallic plate, and/or a plurality of extensions extending outward from a main portion of the metallic plate. A first arrangement of thread stitching secures each of the bridge portions and extensions to the second sheet or to the first and second sheets.
Type:
Grant
Filed:
March 5, 2021
Date of Patent:
October 10, 2023
Assignee:
GM Global Technology Operations LLC
Inventors:
Venkateshwar R. Aitharaju, Princess Len Carlos, Erik B. Golm, Terrence Wathen
Abstract: A method of forming a component includes providing a work-piece blank from a formable material. The work-piece blank includes at least one section having a surface roughness greater than 1 ?m configured to facilitate efficient radiation of thermal energy therefrom when the work-piece blank is heated. The method also includes austenitizing the work-piece blank via heating the work-piece blank at a predetermined temperature for a predetermined amount of time to achieve an austenite microstructure in the at least one section and forestall oxidation of the work-piece blank. The method additionally includes transferring the austenitized work-piece blank into a forming press. The method also includes forming the component via the forming press from the austenitized work-piece blank. The method additionally includes quenching the component formed from the austenitized work-piece blank and cooling the formed component.
Abstract: Presented are hybrid metal and fiber-reinforced polymer (FRP) composite wheels for vehicle wheel assemblies, methods for making/using such wheels, and motor vehicles equipped with such wheels. A wheel for a motor vehicle wheel assembly includes a wheel face with multiple spokes that are circumferentially spaced about and project radially outward from a central hub. The central hub rotatably attaches to the vehicle's body, e.g., via a corner module. The wheel face is fabricated, e.g., as a one-piece structure, from an FRP material. A wheel barrel, which circumscribes the wheel face, includes an annular rim that mounts thereon an inflatable tire. The wheel barrel is fabricated, e.g., as a one-piece structure, from a metallic material. Multiple overmold through holes and/or inset tabs are circumferentially spaced about the annular rim. The FRP material extends through and/or surrounds the overmold through holes/inset tabs and thereby mounts the wheel face to the wheel barrel.
Abstract: A method for controlling an electric drive unit (EDU) having a motor-driven torque converter includes receiving a request signal indicative of a requested output torque of the EDU, and operating the motor at a target motor speed using the requested output torque. The target motor speed minimizes system losses while achieving the requested output torque. When the requested output torque remains below a calibrated threshold and a turbine speed is less than a corner speed of the motor, a torque converter clutch (TCC) transitions to or remains in a locked state. The controller commands the TCC to transition to an unlocked state to reach the target motor speed, thereby selectively enabling torque multiplication. A powertrain system includes a driven load and the EDU. A computer readable storage medium may include executable instructions for performing the method.
Type:
Grant
Filed:
December 27, 2021
Date of Patent:
October 10, 2023
Assignee:
GM Global Technology Operations LLC
Inventors:
Norman K. Bucknor, Chunhao J. Lee, Dongxu Li, Lei Hao, Chengwu Duan
Abstract: Presented are multi-pulse fuel injection systems for monitoring engine fuel injectors for missed pulses, methods for making/using such systems, and vehicles equipped with such systems. A method of operating a fuel injection system includes an engine controller determining if the system's injectors are operating in a multi-pulse mode for injecting multiple fuel pulses per combustion cycle to an engine's cylinders and, if so, monitoring pulse signals transmitted to the injectors for injecting the multiple fuel pulses. For each combustion cycle for each injector, the controller flags a cylinder misfire if any one of the fuel pulses for that combustion cycle is missed. For each cylinder, the controller calculates a misfire ratio of a total number of cylinder misfires to a total number of combustion cycles; if one of these misfire ratios exceeds a calibrated misfire limit, the controller commands a resident subsystem to execute control operations to mitigate the misfires.
Type:
Grant
Filed:
November 15, 2022
Date of Patent:
October 3, 2023
Assignee:
GM Global Technology Operations LLC
Inventors:
J. Michael Gwidt, Daniel P. Himes, Mark D. Carr, Jonathan A. Law, Jeffrey M. Hutmacher