Abstract: Technologies for embedded and immersed heat pipes in automated driving system computers (ADSC) are described herein. In some examples, an ADSC can include one or more cold plates including one or more fluid channels, the one or more fluid channels being configured to circulate a first working fluid from a respective ingress point to a respective egress point; one or more processors coupled to the one or more cold plates; one or more heat pipes coupled to or embedded in the one or more cold plates and configured to collect heat from the one or more processors and transfer the heat away from the one or more processors via a second working fluid in the one or more heat pipes; and a chassis housing the one or more cold plates, the one or more processors, and the one or more heat pipes.
Abstract: Technologies for embedded and immersed vapor chambers in automated driving system computers (ADSC) are described herein. In some examples, an ADSC can include one or more cold plates including one or more fluid channels, the one or more fluid channels being configured to circulate a first working fluid from a respective ingress point to a respective egress point; one or more processors coupled to the one or more cold plates; one or more vapor chambers coupled to or embedded in the one or more cold plates and configured to collect heat from the one or more processors and transfer the heat away from the one or more processors via a second working fluid in the one or more vapor chambers; and a chassis housing the one or more cold plates, the one or more processors, and the one or more vapor chambers.
Abstract: An entertainment system of a vehicle includes: a plurality of cameras configured to capture images around an exterior of the vehicle; one or more displays; and an entertainment module configured to: based on the images, generate panoramic video; and display the panoramic video within the vehicle via the one or more displays.
Type:
Grant
Filed:
October 29, 2020
Date of Patent:
May 3, 2022
Assignee:
GM GLOBAL TECHNOLOGY OPERATIONS LLC
Inventors:
Wei Zeng, Jeremie Dernotte, Ke Liu, Nicole Ellison, Syed B. Mehdi, Kevin J. Silang, Louis G. Hector, Jr.
Abstract: The subject disclosure relates to techniques for providing augmented reality (AR) navigation guidance to users of an autonomous vehicle (AV) ride hailing service. In some aspects, a method of the disclosed technology includes steps for transmitting an autonomous vehicle (AV) ride request to an AV dispatch service, receiving a ride confirmation indicating that an AV has been dispatched to a rider associated with the mobile device, detecting arrival of the AV at a pick-up location associated with the rider, and initializing augment reality (AR) guidance on the mobile device, wherein the AR guidance is configured to provide the rider with navigation information to facilitate pick-up by the AV. Systems and computer-readable media are also provided.
Abstract: Presented are segmented hairpin bar conductors for electric machines, methods for making/using such segmented bar conductors, electromagnetic motors using such segmented bar conductors, and vehicles equipped with an induction motor generator unit using segmented hairpin bar conductors. An electric machine includes a stator that defines multiple circumferentially spaced, radially elongated stator slots. A rotor is located adjacent and movable with respect to the stator. One or more permanent magnets are mounted to the rotor, and one or more U-shaped hairpin windings are mounted to the stator in juxtaposed spaced relation to the magnet(s). Each hairpin winding is formed from an array of collimated, electrically conductive wires that are bundled together into a unitary bar conductor. The segmented hairpin winding has a pair of hairpin legs, each of which adjoins and projects from a respective end of a hairpin crown. Each hairpin leg inserts into a respective one the stator slots.
Abstract: An axle torque distribution system includes a memory and a control module. The memory stores a steering angle and a toque distribution algorithm. The control module executes the torque distribution algorithm to: obtain the steering angle; based on the steering angle, determine total lateral force requested for axles of a vehicle; based on the total lateral force requested, determine lateral forces requested for the axles while constraining lateral force distribution between the axles, where the constraining of the lateral force distribution includes, based on maximum lateral force capacities of tires of the vehicle, limiting the lateral forces requested for the axles; determine available longitudinal capacities for the axles based on the lateral forces requested respectively for the axles; determine torque capacities of the axles based on the lateral forces requested respectively for the axles; and control distribution of torque to the axles based on the torque capacities of the axles.
Type:
Grant
Filed:
January 11, 2021
Date of Patent:
May 3, 2022
Assignee:
GM GLOBAL TECHNOLOGY OPERATIONS LLC
Inventors:
Saurabh Kapoor, Naser Mehrabi, Seyedeh Asal Nahidi, SeyedAlireza Kasaiezadeh Mahabadi, James H. Holbrook, Hualin Tan, Bakhtiar B. Litkouhi