Patents Assigned to Greatbatch Ltd.
  • Patent number: 11980766
    Abstract: A self-centering washer is positioned between the feedthrough and filter capacitor of a filtered feedthrough. The washer has openings through which first and second terminal pins extend. A first opening has an inner arcuate portion contacting the first terminal pin and an outer perimeter portion exposing the braze sealing the terminal pin to the insulator. A second opening has an inner arcuate portion contacting the second terminal pin and an outer perimeter portion exposing the braze sealing the terminal pin to the insulator. In an imaginary configuration with the first and second washer openings superimposed one on top of the other, the cumulative arcuate distance of the inner arcuate portions about one of the terminal pins, subtracting overlap, results in a gap between the superimposed washer openings that is less than a diameter of the first and second terminal pins so that the washer is prevented from lateral movement.
    Type: Grant
    Filed: October 6, 2023
    Date of Patent: May 14, 2024
    Assignee: Greatbatch Ltd.
    Inventors: Jason Woods, Robert A. Stevenson, Christine A. Frysz, Thomas Marzano, Keith W. Seitz
  • Patent number: 11890483
    Abstract: In various examples, an apparatus is configured for subcutaneously inserting an implantable device within a patient. The apparatus includes a dilator portion including a dilator including a dilator length. The dilator portion is configured to separate tissue to create a subcutaneous pocket within the patient sized and shaped to accommodate an implantable device within the subcutaneous pocket. A sheath portion includes a sheath sized and shaped to accommodate the dilator within a sheath lumen. The sheath is configured to accommodate an antenna of the implantable device with the dilator removed from within the sheath. The sheath includes a sheath length that is at least substantially as long as an antenna length. The sheath is configured to separate to allow removal of the sheath around the implantable device to remove the sheath from and leave the implantable device within the subcutaneous pocket within the patient.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: February 6, 2024
    Assignee: Greatbatch Ltd.
    Inventors: Rodolphe Katra, Scott Kimmel, Lawrence Kane, Daniel Chase
  • Patent number: 11878371
    Abstract: In various examples, a component is for use in an implantable medical device. The component includes a pin including a first material attached to a lead including a second material different from the first material of the pin. At least a portion of the lead includes a channel in which at least a portion of the pin sits, the channel including a channel opening defined at least partially by opposing first and second channel sides extending a channel length. At least a first joint is formed along at least a portion of the first channel side. The first joint includes the second material of the lead deformed to at least partially close the channel opening to retain the pin within the channel to attach the lead to the pin. In some examples, the first material includes molybdenum and the second material includes aluminum.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: January 23, 2024
    Assignee: Greatbatch Ltd.
    Inventors: Jordan A Hartwig, Kenneth B. Talamine
  • Patent number: 11813063
    Abstract: In various examples, a component for a medical device is described. The component includes a conductor wire including a connection portion. An electrode is formed from a conductive tube. The conductive tube is compressed at least partially around the connection portion of the conductor wire to at least partially surround and couple to the connection portion.
    Type: Grant
    Filed: November 16, 2021
    Date of Patent: November 14, 2023
    Assignee: Greatbatch Ltd.
    Inventors: Hugh D. Hestad, Jeff Fleigle, Christopher Mauhar, Krishna Vedula, Hitesh Mehta, Rommy U. Huleis
  • Patent number: 11799172
    Abstract: An electrochemical cell comprises a casing having an open- ended container closed by a lid. An anode and cathode are housed inside the casing. The cathode housed inside a primary separator envelope is electrically connected to a positive polarity terminal pin electrically isolated from the casing by a glass-to- The anode is electrically connected to the casing metal seal. serving as a negative terminal. The primary separator enveloping the cathode is contained in a secondary separator comprising an open-ended bag-shaped member extending to an open annular edge. The open annular edge of the secondary separator resides between the cathode electrically connected to the terminal pin and the anode electrically connected to the casing. An electrolyte provided in the casing activates the anode and cathode.
    Type: Grant
    Filed: October 20, 2021
    Date of Patent: October 24, 2023
    Assignee: Greatbatch Ltd.
    Inventor: Gary Freitag
  • Publication number: 20230321451
    Abstract: An implantable neural stimulation device is provided, comprising a body containing stimulation electronics, and a battery to provide stimulation energy, a lid, coupled to the body, the lid configured to at least partially seal the body and a header coupled to the body of the device. The header comprises a contact assembly electrically coupled to the stimulation electronics via at least one feedthrough wire extending through the lid, the contact assembly configured to connect to a stimulation lead to deliver the stimulation energy from the battery under control by the stimulation electronics, a charge coil configured to charge the battery, and a support component configured to support the charge coil. The support component is supported in position by the contact assembly.
    Type: Application
    Filed: March 16, 2023
    Publication date: October 12, 2023
    Applicants: Saluda Medical Pty Ltd, Greatbatch Ltd.
    Inventors: Federica Fernandez, Luis Daniel Villamil, Andrew Hancock
  • Patent number: 11742520
    Abstract: An electrochemical cell having a casing housing an electrode assembly of a separator residing between a lithium anode and a cathode comprising silver vanadium oxide and fluorinated carbon is described. The electrode assembly is activated with a nonaqueous electrolyte comprising a lithium salt dissolved in a solvent system of propylene carbonate mixed with 1,2-dimethoxyethane, dibenzyl carbonate (DBC), lithium bis(oxalato)borate (LiBOB), and fluoroethylene carbonate (FEC). Preferably DBC is present in an amount ranging from about 0.005 moles (M) to about 0.25M, LiBOB is present in an amount ranging from about 0.005 wt. 5 to about 5 wt. %, and FEC is present in an amount ranging from about 0.01 wt. % to about 10 wt. %. This electrolyte formulation is more conductive than the conventional or prior art binary and ternary solvent system electrolytes while being chemically and electrochemically stable toward Li/SVO cells, Li-SVO/CFx mixture cells, and Li-SVO/CFx sandwich cathode primary electrochemical cells.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: August 29, 2023
    Assignee: Greatbatch Ltd.
    Inventors: Robert S. Rubino, Joseph M. Lehnes, Marcus J. Palazzo, David M. Spillman, Ho-Chul Yun
  • Patent number: 11735773
    Abstract: An electrochemical cell having a casing housing an electrode assembly of a separator residing between a lithium anode and a cathode comprising silver vanadium oxide and fluorinated carbon is described. The electrode assembly is activated with a nonaqueous electrolyte comprising a lithium salt dissolved in a solvent system of propylene carbonate mixed with 1,2-dimethoxyethane, lithium bis(oxalato)borate (LiBOB), and fluoroethylene carbonate (FEC). Preferably LiBOB is present in an amount ranging from about 0.005 wt. 5 to about 5 wt. %, and FEC is present in an amount ranging from about 0.01 wt. % to about 10 wt. %. This electrolyte formulation is more conductive than the conventional or prior art binary and ternary solvent system electrolytes while being chemically and electrochemically stable toward Li/SVO cells, Li-SVO/CFx mixture cells, and Li-SVO/CFx sandwich cathode primary electrochemical cells.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: August 22, 2023
    Assignee: Greatbatch Ltd.
    Inventors: Robert S. Rubino, Joseph M. Lehnes, Marcus J. Palazzo, David M. Spillman, Ho-Chul Yun
  • Patent number: 11717646
    Abstract: In various examples, a system includes a steerable medical device including a handle including a longitudinal axis. An elongate shaft extends distally from the handle. The elongate shaft includes a distal tip and a lumen through the elongate shaft. At least four pullwires are disposed within the handle and extending to and anchored proximate the distal tip of the elongate shaft. At least two actuators are associated with the handle. The at least two actuators are operably coupled to the at least four pullwires with actuation of the first actuator causing tension in the first or second pullwire to deflect the distal tip in a first or second tip direction, respectively, and actuation of the second actuator causing tension in the third or fourth pullwire to deflect the distal tip in a third or fourth tip direction, respectively.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: August 8, 2023
    Assignee: Greatbatch Ltd.
    Inventors: Grant A. Scheibe, Travis White
  • Patent number: 11712571
    Abstract: A feedthrough for an AIMD is described. The feedthrough includes an electrically conductive ferrule having a ferrule sidewall defining a ferrule opening. The ferrule sidewall has a height. At least one recessed pocket has a depth extending part-way through the height of the ferrule. An oxide-resistant pocket-pad is nested in the recessed pocket. An electrical connection material is supported on the pocket-pad for making an oxide-resistant electrical connection to the ferrule. An insulator is hermetically sealed to the ferrule in the ferrule opening. At least one active via hole extends through the insulator with an active conductive pathway residing in and hermetically sealed to the insulator in the active via hole.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: August 1, 2023
    Assignee: Greatbatch Ltd.
    Inventors: Christine A. Frysz, Robert A. Stevenson, Jason Woods
  • Patent number: 11715868
    Abstract: A miniature electrochemical cell of a primary or secondary chemistry with a total volume that is less than 0.5 cc is described. The cell has a casing comprising an annular sidewall supported on a lower plate opposite an upper lid. The lid has a sealed electrolyte fill port that is axially aligned with an annulus residing between the inner surface of the annular sidewall and the electrode assembly. The fill port axially aligned with the annulus between the electrode assembly and the casing sidewall allows the casing to be filled with electrolyte using a vacuum filling process so that activating electrolyte readily wets the anode and cathode active materials and the intermediate separator.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: August 1, 2023
    Assignee: Greatbatch Ltd.
    Inventors: Jared D. Arellano, Lasantha Viyannalage
  • Patent number: 11670816
    Abstract: A lid assembly for an electrochemical cell comprises a plate-shaped lid having an opening and a glass-to-metal seal (GTMS) residing in the lid opening. The GTMS does not have a ferrule. Instead, the GTMS has a sealing glass that seals directly to a terminal pin and to the lid. The terminal pin has an enlarged diameter pin section contacted by the sealing glass and a first reduced diameter pin section extending axially outwardly from the enlarged diameter pin section. An electrochemical cell provided with the lid assembly is also described.
    Type: Grant
    Filed: August 23, 2021
    Date of Patent: June 6, 2023
    Assignee: Greatbatch Ltd.
    Inventors: Gary Freitag, Joseph M. Prinzbach
  • Patent number: 11666766
    Abstract: In various examples, a method of establishing a communication session between an external device and an implantable medical device is described. The method includes generating at the external device a first private key and a first public key. A start session order is sent over a long-range communication channel. Evidence of physical proximity is sent from the external device to the implantable medical device over a short-range communication channel. A second private key and a second public key are generated at the implantable medical device. A first shared key is generated by the implantable medical device using the first public key and the second private key. A second shared key is generated by the external device using the second public key and the first private key. The first and second shared keys are used to encrypt and decrypt one or more messages between the external device and the implantable medical device.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: June 6, 2023
    Assignee: Greatbatch Ltd.
    Inventors: Federico Nin, Andrés Duarte, Andrés Casaravilla, Juan Andrés Da Misa, Cecilia Eluén, Óscar Sanz
  • Patent number: 11648409
    Abstract: An EMI/energy dissipating filter for an active implantable medical device (AIMD) comprises a first gold braze sealing an insulator to the ferrule of a glass-to-metal seal (GTMS) and a lead wire that is sealed in a passageway through the insulator by a second gold braze. A circuit board is disposed adjacent to the insulator. A two-terminal chip capacitor disposed adjacent to the circuit board has an active end metallization connected to its active electrode plates and a ground end metallization connected to its ground electrode plates. A ground electrical path extends from the ground end metallization of the chip capacitor, through a circuit board ground plate disposed on or within the circuit board, and to the ferrule. An active electrical path extends from the active end metallization of the chip capacitor to the lead wire of the GTMS.
    Type: Grant
    Filed: October 19, 2021
    Date of Patent: May 16, 2023
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Christine A. Frysz, Richard L. Brendel
  • Patent number: 11651873
    Abstract: A ceramic subassembly manufactured by a 3D-printing process is described. The ceramic subassembly comprises a ceramic substrate having a sidewall extending to spaced apart first and second end surfaces. At least one via extends through the substrate from the ceramic substrate first end surface to the ceramic substrate second end surface. In cross-section, the via has a square-shape with rounded corners.
    Type: Grant
    Filed: June 24, 2022
    Date of Patent: May 16, 2023
    Assignee: Greatbatch Ltd.
    Inventors: Brian P. Hohl, Dallas J. Rensel, Jonathan Calamel, Christine A. Frysz
  • Patent number: 11633612
    Abstract: A hermetically sealed feedthrough assembly for an active implantable medical device having an oxide-resistant electrical attachment for connection to an EMI filter, an EMI filter circuit board, an AIMD circuit board, or AIMD electronics. The oxide-resistant electrical attachment, including an oxide-resistant sputter layer 165 is disposed on the device side surface of the hermetic seal ferrule over which an ECA stripe is provided. The ECA stripe may comprise one of a thermal-setting electrically conductive adhesive, an electrically conductive polymer, an electrically conductive epoxy, an electrically conductive silicone, an electrically conductive polyimides, or an electrically conductive polyimide, such as those manufactured by Ablestick Corporation. The oxide-free electrical attachment between the ECA stripe and the filter or AIMD circuits may comprise one of gold, platinum, palladium, silver, iridium, rhenium, rhodium, tantalum, tungsten, niobium, zirconium, vanadium, and combinations or alloys thereof.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: April 25, 2023
    Assignee: Greatbatch Ltd.
    Inventors: Christine A. Frysz, Robert A. Stevenson, Jason Woods
  • Publication number: 20230114832
    Abstract: A miniature electrochemical cell of a secondary chemistry having a total volume that is less than 0.5 cc is described. Before the present invention, miniature secondary electrochemical cells have been known to experience undesirable open circuit voltage discharge during their initial 21-day aging period. It is believed that electrolyte permeating through the cathode active material and an intermediate carbonaceous coating contacting the titanium base plate of the casing is the source of the undesirable discharge. To ameliorate this, aluminum is contacted to the inner surface of the base plate inside the casing. While aluminum is resistant to the corrosion reaction that is believed to be the mechanism for degraded open circuit voltage in miniature secondary electrochemical cells containing lithium, it is not biocompatible. This means that titanium is still a preferred material for the casing parts including the base plate that might be exposed to body fluids, and the like.
    Type: Application
    Filed: October 7, 2022
    Publication date: April 13, 2023
    Applicant: Greatbatch Ltd.
    Inventors: Lasantha Viyannalage, David Dianetti, Jared Arellano, Ho Chul Yun, Robert S. Rubino
  • Patent number: 11588171
    Abstract: A miniature electrochemical cell having a total volume that is less than 0.5 cc is described. The cell casing is formed by joining two ceramic casing halves together. One or both casing halves are machined from ceramic to provide a recess that is sized and shaped to contain the electrode assembly. The opposite polarity terminals are electrically conductive feedthroughs or pathways, such as of gold, and are formed by brazing gold into tapered via holes machined into one or both ceramic casing halves. The two ceramic casing halves are separated from each other by a metal interlayer, such as of gold, bonded to a thin film metallization layer, such as of titanium, that contacts an edge periphery of each ceramic casing half. A solid electrolyte of LiPON (LixPOyNz) is used to activate the electrode assembly.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: February 21, 2023
    Assignee: Greatbatch Ltd.
    Inventors: Keith W. Seitz, Xiaohong Tang, Holly Noelle Moschiano, Biswa P. Das, Brian P. Hohl
  • Patent number: 11581545
    Abstract: A miniature electrochemical cell having a volume of less than 0.5 cc is described. The cell has a casing of first and second ceramic substrates that are hermetically secured to each other to provide an internal space housing an electrode assembly. First and second conductive pathways extend through the ceramic substrates. The pathways have respective inner surfaces that are conductively connected to the respective anode and cathode current collectors and respective outer surfaces that provide for connection to a load. An electrolyte in the internal space of the housing activates the electrode assembly.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: February 14, 2023
    Assignee: Greatbatch Ltd.
    Inventors: Keith W. Seitz, Brian P. Hohl, Todd C. Sutay, Gary Freitag
  • Patent number: 11571580
    Abstract: The present invention changes the magnet-mode of an active implantable medical device (AIMD) such that repeated application of a clinical magnet in a predetermined and deliberate time sequence will induce the AIMD to enter into its designed magnet-mode. In one embodiment, a clinical magnet is applied close to and over the AIMD and removed a specified number of times within a specified timing sequence. In another embodiment, the clinical magnet is applied close to and over the AIMD and flipped a specified number of times within a specified timing sequence. This makes it highly unlikely that the magnet in a portable electronic device, children's toy, and the like can inadvertently and dangerously induce AIMD magnet-mode.
    Type: Grant
    Filed: April 8, 2022
    Date of Patent: February 7, 2023
    Assignees: Greatbatch Ltd.
    Inventors: Michael C. Steckner, Robert A. Stevenson