Patents Assigned to Greatbatch Ltd.
  • Patent number: 10881867
    Abstract: A method for making a dielectric substrate configured for incorporation into a hermetically sealed feedthrough is described. The method includes forming a via hole through a green-state dielectric substrate. A platinum-containing paste is filled into at least 90% of the volume of the via hole. The green-state dielectric substrate is then subjected to a heating protocol including: a binder bake-out heating portion performed at a temperature ranging from about 400° C. to about 700° C. for a minimum of 4 hours; a sintering heating portion performed at a temperature ranging from about 1,400° C. to about 1,900° C. for up to 6 hours; and a cool down portion at a rate of up to 5°/minute from a maximum sintering temperature down to about 1,000° C., then naturally to room temperature. The thusly manufacture dielectric substrate is then positioned in an opening in a ferrule that is configured to be attached to a metal housing of an active implantable medical device.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: January 5, 2021
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Xiaohong Tang, William C. Thiebolt, Christine A. Frysz, Keith W. Seitz, Richard L. Brendel, Thomas Marzano, Jason Woods, Dominick J. Frustaci, Steven W. Winn
  • Patent number: 10874866
    Abstract: A three-terminal flat-through EMI/energy dissipating filter comprises an active electrode plate through which a circuit current passes between a first terminal and a second terminal, a first shield plate on a first side of the active electrode plate, and second shield plate on a second side of the active electrode plate opposite the first shield plate. The first and second shield plates are conductively coupled to a grounded third terminal. Both the effective capacitance area or overlapping surface area of the active electrode plate and the surrounding ground shield plates and the dielectric constant of the insulating layers between the active electrode plate and the ground shield plates is raised to achieve a higher capacitance value for the three-terminal flat-through capacitor.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: December 29, 2020
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Christine A. Frysz, Richard L. Brendel
  • Patent number: 10857368
    Abstract: Disclosed herein are electrically conductive and hermetic vias disposed within an insulator substrate of a feedthrough assembly and methods for making and using the same. Such aspects of the present invention consequently provide for the miniaturization of feedthrough assemblies inasmuch as the feedthrough components of the present invention are capable of supporting very small and hermetic conductively filled via holes in the absence of additional components, such as, for example, terminal pins, leadwires, and the like.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: December 8, 2020
    Assignee: Greatbatch Ltd.
    Inventors: Keith W. Seitz, Xiaohong Tang, William C. Thiebolt, Jonathan Calamel, Thomas Shi, Thomas Marzano
  • Patent number: 10857369
    Abstract: An EMI/energy dissipating filter for an active implantable medical device (AIMD) is described. The filter comprises a first gold braze hermetically sealing the insulator to a ferrule that is configured to be mounted in an opening in a housing for the AIMD. A lead wire is hermetically sealed in a passageway through the insulator by a second gold braze. A circuit board substrate is disposed adjacent the insulator. A two-terminal chip capacitor disposed adjacent to the circuit board has an active end metallization that is electrically connected to the active electrode plates and a ground end metallization that is electrically connected to the at least one ground electrode plates of the chip capacitor. There is a ground path electrically extending between the ground end metallization of the chip capacitor and the ferrule.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: December 8, 2020
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Christine A. Frysz, Richard L. Brendel
  • Patent number: 10828498
    Abstract: An enhanced RF switchable filtered feedthrough for real-time identification of the electrical and physical integrity of an implanted AIMD lead includes a DOUBLE POLE RF switch disposed on the device side. Additionally, the RF switchable filtered feedthrough can optionally include transient voltage suppressors (TVS) and an MRI mode. In an embodiment, a DOUBLE POLE RF switch selectively disconnects EMI filter capacitors so that an RF test/interrogation signal is sent from the AIMD down into an implanted lead(s). The reflected RF signal is then analyzed to assess implanted lead integrity including lead body anomalies, lead insulation defects, and/or lead conductor defects. The Double Pole switch is configured to be controlled by an AIMD control signal to switch between FIRST and SECOND THROW positions.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: November 10, 2020
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Keith W. Seitz, Jason Woods, Christine A. Frysz
  • Patent number: 10821290
    Abstract: A cable assembly for a patient treatment system comprises an electrical cable having a proximal connector configured to connect to an external electrical stimulator device and a distal connector including a distal housing having an open distal end. The distal housing houses a manifold that supports a plurality of spring-loaded electrical contact assemblies aligned in two rows and being electrically connected to a corresponding one of a plurality of electrical contacts in the proximal connector. The housing distal open end is closed by a header that is movable between a closed position resting on the housing open end and an open position spaced there above. The header has a pair of side-by-side longitudinally extending openings. With the header in the open position, a practitioner holds the distal connector in one hand and with the other hand inserts the distal electrical contacts of one or two therapy delivery devices into the longitudinally extending openings.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: November 3, 2020
    Assignee: Greatbatch Ltd.
    Inventors: Luis Daniel Villamil, Mathias de Souza
  • Patent number: 10813744
    Abstract: An intraocular implant (IOI) includes a lens structure with variable optical power, a sensor that detects an optical accommodation response, a rechargeable power storage device, a recharging interface, a wireless communication interface, and a controller. The controller can receive information from the sensor indicating an optical accommodation response, control the lens structure to vary the variable optical power based on the information received from the sensor, control the recharging interface to recharge the rechargeable power storage device, and further control the recharging interface to receive power for operation of the IOI, and transmit and receive information through the wireless communication interface.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: October 27, 2020
    Assignees: Greatbatch Ltd., Elenza, Inc.
    Inventors: Amitava Gupta, Rudy Mazzocchi, Roel Trip, Brian Peterson, George Cintra, Joey Chen, Leslie Halberg
  • Patent number: 10790482
    Abstract: An lithium-iodine electrochemical cell and method of making is described. The cell comprises a lithium anode and a cathode of a charge transfer complex which includes iodine and preferably polyvinylpyridine. The iodine-containing cathode is in operative contact with both the anode the cell casing serving as the cathode current collector. Preferably the casing is composed of stainless steel that has been thermally annealed at temperatures of 1,800° F. or less. The annealed stainless steel has a grain size of about ASTM 7 or finer. When the iodine-containing cathode material in liquid form is filled into the casing, it contacts the inner casing surface. The passivation layer that subsequently forms at the contact interface affects cell impedance during discharge. It is desirable to maintain the internal impedance as low as possible.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: September 29, 2020
    Assignee: Greatbatch Ltd.
    Inventors: Lasantha Viyannalage, Adrish Ganguly, Ashish Shah, David Panek
  • Patent number: 10770698
    Abstract: A miniature electrochemical cell having a volume of less than 0.5 cc is described. The cell has a casing of first and second ceramic substrates that are hermetically secured to each other to provide an internal space housing an electrode assembly. First and second conductive pathways extend through the ceramic substrates. The pathways have respective inner surfaces that are conductively connected to the respective anode and cathode current collectors and respective outer surfaces that provide for connection to a load. An electrolyte in the internal space of the housing activates the electrode assembly.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: September 8, 2020
    Assignee: Greatbatch Ltd.
    Inventors: Keith W. Seitz, Brian P. Hohl, Todd C. Sutay, Gary Freitag
  • Patent number: 10737085
    Abstract: In various examples, a hub for a medical device includes a hub housing including a passage from a proximal end of the hub housing to a distal end of the hub housing. A valve is disposed within the hub. The valve is configured to allow passage of an insertable device through the valve while inhibiting leakage of fluid from the valve. A cap is engaged to the hub housing. The cap includes an opening therethrough sized and shaped to allow passage of the insertable device through the opening. The opening allows access to the passage of the hub housing. An angled sidewall is disposed within the hub. The angled sidewall is configured to retain and deform the valve into a curved shape.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: August 11, 2020
    Assignee: Greatbatch Ltd.
    Inventors: Hans P. Rieckmann, Hans Pflaumer, Grant A. Scheibe, Biswa P. Das, Joseph E. Lesser, Thomas E. Bailey
  • Patent number: 10722706
    Abstract: An EMI/energy dissipating filter for an active implantable medical device (AIMD) is described. The filter comprises a first gold braze hermetically sealing the insulator to a ferrule that is configured to be mounted in an opening in a housing for the AIMD. A lead wire is hermetically sealed in a passageway through the insulator by a second gold braze. A circuit board substrate is disposed adjacent the insulator. A two-terminal chip capacitor disposed adjacent to the circuit board has an active end metallization that is electrically connected to the active electrode plates and a ground end metallization that is electrically connected to the at least one ground electrode plates of the chip capacitor. There is a ground path electrically extending between the ground end metallization of the chip capacitor and the ferrule.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: July 28, 2020
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Christine A. Frysz, Richard L. Brendel
  • Patent number: 10709870
    Abstract: In various examples, a system includes a steerable medical device including a handle including a longitudinal axis. An elongate shaft extends distally from the handle. The elongate shaft includes a distal tip and a lumen through the elongate shaft. At least four pullwires are disposed within the handle and extending to and anchored proximate the distal tip of the elongate shaft. At least two actuators are associated with the handle. The at least two actuators are operably coupled to the at least four pullwires with actuation of the first actuator causing tension in the first or second pullwire to deflect the distal tip in a first or second tip direction, respectively, and actuation of the second actuator causing tension in the third or fourth pullwire to deflect the distal tip in a third or fourth tip direction, respectively.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: July 14, 2020
    Assignee: Greatbatch Ltd.
    Inventors: Grant A. Scheibe, Travis White
  • Patent number: 10625084
    Abstract: An RF switchable filter feedthrough housed inside an AIMD is described. The RF switchable filter feedthrough includes an RF switch having a switching pole that is configured to be controlled by an AIMD control signal to switch between first and second throw position. In the first throw position, a conductive leadwire hermetically sealed to and disposed through an insulator is electrically connected to a two-terminal MLCC chip capacitor which in turn is electrically connected to the ferrule. In the first throw position, EMI energy imparted to a body fluid side implanted lead is diverted to the housing of the AIMD by the chip capacitor. In the second throw position, the conductive leadwire is electrically connected to an RF source disposed inside the AIMD housing. In the second throw position, by measuring a reflective return signal from the RF source it can be determined whether the implanted lead has a defective lead conductor.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: April 21, 2020
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Keith W. Seitz
  • Patent number: 10629862
    Abstract: Disclosed herein are electrochemical cells that generally relate to the conversion of chemical energy to electrical energy. More particularly, the present disclosure is directed to primary lithium electrochemical cells possessing insulator pocket structures, which substantially envelope cathode components to prevent lithium cluster formation therein.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: April 21, 2020
    Assignee: Greatbatch Ltd.
    Inventors: Mark J. Roy, Gary Freitag, Joseph M. Lehnes, David Dianetti
  • Patent number: 10596369
    Abstract: A hermetically sealed filtered feedthrough assembly includes an electrically conductive ferrule sealed by a first gold braze to an insulator disposed at least partially within a ferrule opening. A conductive wire is disposed within a via hole disposed through the insulator extending from a body fluid side to a device side. A second gold braze hermetically seals the conductive leadwire to the via hole. A capacitor is disposed on the device side having a capacitor dielectric body with a dielectric constant k that is greater than 0 and less than 1000. The capacitor is the first filter capacitor electrically connected to the conductive leadwire coming from the body fluid side into the device side. An active electrical connection electrically connects the conductive leadwire to the capacitor active metallization. A ground electrical connection electrically connects the capacitor ground metallization to the ferrule and housing of the active implantable medical device.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: March 24, 2020
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Christine A. Frysz, Thomas Marzano, Keith W. Seitz, Marc Gregory Martino
  • Patent number: 10589107
    Abstract: A feedthrough separates a body fluid side from a device side. A passageway is disposed through the feedthrough. A body fluid side leadwire extends from a first end disposed inside the passageway to a second end on the body fluid side. A device side leadwire extends from a first end disposed inside the passageway to a second end on the device side. The body fluid side leadwire is hermetically sealed to the feedthrough body and is not of the same material as the device side leadwire. A circuit board has an active via hole with a second end of the second leadwire residing therein. The circuit board has an active circuit trace that is electrically connectable to electronic circuits housed in an AIMD, and a circuit board ground metallization.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: March 17, 2020
    Assignee: Greatbatch Ltd.
    Inventors: Keith W. Seitz, Thomas Marzano, Robert A. Stevenson, Christine A. Frysz, Jason Woods, Richard L. Brendel, Marc Gregory Martino
  • Patent number: 10583302
    Abstract: The application of a titanium hydride coating on a ceramic, preferably an alumina ceramic, as a facile and inexpensive approach to bond gold to the ceramic during brazing is described. During the brazing process, the deposited titanium hydride is first partially decomposed to form pure titanium intermixed with titanium hydride. The combination of pure titanium and titanium hydride contributes to improved adhesion of gold with the alumina ceramic without any detrimental reaction between pure titanium and gold. The titanium hydride coating can be applied by dip/spray/paint coating.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: March 10, 2020
    Assignee: Greatbatch Ltd.
    Inventors: Dongfa Li, Biswa P. Das, Ashish Shah
  • Patent number: 10587073
    Abstract: A feedthrough filter capacitor assembly comprising a terminal pin connector is described. The terminal pin connector is designed to facilitate an electrical connection between the terminal pin comprising a multitude of compositions to a circuit board of an implantable medical device. The terminal pin connector comprises a clip portion positioned within a connector housing. The connector clip mechanically attaches to the terminal pin of the feedthrough with at least one prong and an exterior surface of the connector housing electrically contacts the circuit board, creating an electrical connection therebetween. The connector housing comprises a material that is conducive to a weld or solder attachment process to the circuit board.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: March 10, 2020
    Assignee: Greatbatch Ltd.
    Inventors: Thomas Marzano, Keith W. Seitz, Michael F. Scalise
  • Patent number: 10581075
    Abstract: The present invention related to an electrochemical cell comprising an anode of a Group IA metal and a cathode of a composite material prepared from an aqueous mixture of iron sulfate, cobalt sulfate and sulfur. The cathode material of the present invention provides an increased rate pulse performance compared to iron disulfide cathode material. This makes the cathode material of the present invention particularly useful for implantable medical applications.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: March 3, 2020
    Assignee: Greatbatch Ltd.
    Inventors: Marcus J. Palazzo, Ashish Shah
  • Patent number: RE48348
    Abstract: A feedthrough filter capacitor assembly includes a conductive terminal pin which extends through a first passageway of a capacitor in conductive relation with a first set of electrode plates, and through a conductive ferrule and an insulator in non-conductive relation. The insulator includes ground plates conductively coupled to the ferrule. A second set of electrode plates of the capacitor are conductively coupled to the insulator ground plates, such as by a ground pin extending through the capacitor in relation with the second set of electrode plates, and at least partially extending through a second passageway of the insulator in conductive relation with the ground plates. In this manner, the exterior electrical/mechanical connection between the capacitor and ferrule or other ground member is eliminated.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: December 8, 2020
    Assignee: Greatbatch Ltd.
    Inventor: Robert A. Stevenson